Processing and Representation of Multispectral Images Using Deep Learning Techniques

Q4 Computer Science
Patricia L. Suárez
{"title":"Processing and Representation of Multispectral Images Using Deep Learning Techniques","authors":"Patricia L. Suárez","doi":"10.5565/REV/ELCVIA.1246","DOIUrl":null,"url":null,"abstract":"This thesis has implemented innovative techniques in the field of computer vision using visible and near-infrared spectrum images, applying deep learning through convolutional networks, especially GANs' architectures, which are specialists in generating information and also includes meta techniques -learning to tackle the problem of determining the similarity of images of a different spectrum. In this research, with this type of convolutional networks, different supervised and unsupervised techniques have been created to solve challenging problems, like detect the similarity of patches of different spectra (visible-infrared), colorized images of the near-infrared spectrum, estimation of vegetation index (NDVI) and the haze removal present on RGB images using NIR images. For all these techniques different variants of the GAN's networks, such as standard, conditional, stacked, and cyclic have been used. Also, a metric-based meta-learning approach has been implemented. It should be mentioned that together with the implementation of adversarial network models, the use of multiple loss functions has been proposed to improve the generalization and increase the effectiveness of the models. The experiments were performed with paired and unpaired images, given the different supervised and unsupervised architectures implemented, respectively. The experimental results obtained in each of the approaches implemented in the doctoral work compared with the techniques of the state of the art were shown to be more effective.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.1246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

This thesis has implemented innovative techniques in the field of computer vision using visible and near-infrared spectrum images, applying deep learning through convolutional networks, especially GANs' architectures, which are specialists in generating information and also includes meta techniques -learning to tackle the problem of determining the similarity of images of a different spectrum. In this research, with this type of convolutional networks, different supervised and unsupervised techniques have been created to solve challenging problems, like detect the similarity of patches of different spectra (visible-infrared), colorized images of the near-infrared spectrum, estimation of vegetation index (NDVI) and the haze removal present on RGB images using NIR images. For all these techniques different variants of the GAN's networks, such as standard, conditional, stacked, and cyclic have been used. Also, a metric-based meta-learning approach has been implemented. It should be mentioned that together with the implementation of adversarial network models, the use of multiple loss functions has been proposed to improve the generalization and increase the effectiveness of the models. The experiments were performed with paired and unpaired images, given the different supervised and unsupervised architectures implemented, respectively. The experimental results obtained in each of the approaches implemented in the doctoral work compared with the techniques of the state of the art were shown to be more effective.
使用深度学习技术处理和表示多光谱图像
本文利用可见和近红外光谱图像在计算机视觉领域实现了创新技术,通过卷积网络应用深度学习,特别是gan的架构,它是生成信息的专家,还包括元技术-学习来解决确定不同光谱图像相似性的问题。在这项研究中,使用这种类型的卷积网络,创建了不同的监督和无监督技术来解决具有挑战性的问题,例如检测不同光谱斑块的相似性(可见-红外),近红外光谱的彩色图像,植被指数(NDVI)的估计以及使用近红外图像去除RGB图像上存在的雾霾。对于所有这些技术,GAN网络的不同变体,如标准、条件、堆叠和循环已经被使用。此外,还实现了一种基于度量的元学习方法。值得一提的是,在实现对抗网络模型的同时,还提出了使用多重损失函数来改善模型的泛化和提高模型的有效性。实验分别使用配对和未配对的图像进行,分别实现了不同的监督和无监督架构。在博士工作中实施的每种方法中获得的实验结果与最先进的技术相比,显示出更有效的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信