Deflection analysis of welded steel I‐girders with corrugated webs based on first yield

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xutong Zhang, H. Far, Xuqun Lin
{"title":"Deflection analysis of welded steel I‐girders with corrugated webs based on first yield","authors":"Xutong Zhang, H. Far, Xuqun Lin","doi":"10.1002/stco.202200001","DOIUrl":null,"url":null,"abstract":"Sinusoidal corrugated profile webs have been popularly used in steel structural designs to replace the flat webs in conventional welded beams, while there are better performances in corrugated web beams (CWBs) regarding more stability and less material used to against beam failures caused by buckling. Previous studies have provided that CWBs enabled numerous favourable benefits to be recognised as alternatives to the traditional weld beams in designing structures. Furthermore, as CWBs are proposed as the major load‐carrying elements, the maximum deflection in the elastic range is one of the important beam properties that should be precisely estimated and calculated. To find an appropriate method in computing the maximum deflection of CWBs based on the first yield for civil communities in Australia, proposed equations based on other standards will be employed to calculate the theoretical results for the comparisons with simulation‐based results. While applying the linear analysis simulations provided by SAP 2000, ultimate limit state design theory has also been used with requirements stated by AS 4100. In this study, the results in theoretical calculations and numerical simulations have been compared to conclude that the highly defined equations by ASTM [37] and Sause et al. [38] could precisely estimate the maximum deflections of CWBs based on the first yield in conjunction with requirements and limitations in Australian standards, which could be adequate for the structural design calculations in Australian design fields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202200001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sinusoidal corrugated profile webs have been popularly used in steel structural designs to replace the flat webs in conventional welded beams, while there are better performances in corrugated web beams (CWBs) regarding more stability and less material used to against beam failures caused by buckling. Previous studies have provided that CWBs enabled numerous favourable benefits to be recognised as alternatives to the traditional weld beams in designing structures. Furthermore, as CWBs are proposed as the major load‐carrying elements, the maximum deflection in the elastic range is one of the important beam properties that should be precisely estimated and calculated. To find an appropriate method in computing the maximum deflection of CWBs based on the first yield for civil communities in Australia, proposed equations based on other standards will be employed to calculate the theoretical results for the comparisons with simulation‐based results. While applying the linear analysis simulations provided by SAP 2000, ultimate limit state design theory has also been used with requirements stated by AS 4100. In this study, the results in theoretical calculations and numerical simulations have been compared to conclude that the highly defined equations by ASTM [37] and Sause et al. [38] could precisely estimate the maximum deflections of CWBs based on the first yield in conjunction with requirements and limitations in Australian standards, which could be adequate for the structural design calculations in Australian design fields.
基于一次屈服的波纹腹板焊接工字钢主梁挠度分析
正弦波纹型材腹板已广泛用于钢结构设计,以取代传统焊接梁中的平腹板,而波纹腹板梁(CWB)具有更好的性能,具有更高的稳定性和更少的材料来防止由屈曲引起的梁失效。先前的研究表明,在结构设计中,CWB可以作为传统焊接梁的替代品,获得许多有利的好处。此外,由于CWB被认为是主要的承载元件,弹性范围内的最大挠度是梁的重要特性之一,应精确估计和计算。为了找到一种合适的方法,根据澳大利亚民用社区的首次屈服来计算CWB的最大挠度,将采用基于其他标准的拟议方程来计算理论结果,以便与基于模拟的结果进行比较。在应用SAP 2000提供的线性分析模拟的同时,极限状态设计理论也被用于AS 4100规定的要求。在本研究中,对理论计算和数值模拟的结果进行了比较,得出的结论是,ASTM[37]和Sause等人[38]高度定义的方程可以根据第一屈服以及澳大利亚标准的要求和限制,精确估计CWB的最大挠度,这对于澳大利亚设计领域的结构设计计算是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信