{"title":"Determination of 3D near fault seismic behaviour of Oroville earth fill dam using burger material model and free field-quiet boundary conditions","authors":"M. Karalar, Murat Çavuşlu","doi":"10.1080/13873954.2022.2033274","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the three-dimensional (3D) near-fault earthquake performance of the Oroville dam is examined considering a special material model and various seismic boundary conditions. The 3D finite-difference model of the Oroville EF dam is modeled using the finite difference method. Burger Creep (BC) material model is utilized for the foundation and dam body materials. Special interface elements are taken into account between the dam body and foundation. Fix, free field, and quiet seismic boundary conditions are considered for 3D nonlinear earthquake analyses. Total six various strong near-fault earthquakes are used in the 3D analyses. According to the non-linear earthquake analyses, principal stresses, horizontal and vertical displacements for three nodal points are assessed in detail and numerical results are compared for reflecting and non-reflecting seismic boundary conditions. It is clearly understood that seismic boundary conditions should not be utilized randomly for 3D modeling and analysis of EF dams.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"55 - 77"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2022.2033274","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT In this study, the three-dimensional (3D) near-fault earthquake performance of the Oroville dam is examined considering a special material model and various seismic boundary conditions. The 3D finite-difference model of the Oroville EF dam is modeled using the finite difference method. Burger Creep (BC) material model is utilized for the foundation and dam body materials. Special interface elements are taken into account between the dam body and foundation. Fix, free field, and quiet seismic boundary conditions are considered for 3D nonlinear earthquake analyses. Total six various strong near-fault earthquakes are used in the 3D analyses. According to the non-linear earthquake analyses, principal stresses, horizontal and vertical displacements for three nodal points are assessed in detail and numerical results are compared for reflecting and non-reflecting seismic boundary conditions. It is clearly understood that seismic boundary conditions should not be utilized randomly for 3D modeling and analysis of EF dams.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.