Volatility and dynamic dependence modeling: Review, applications, and financial risk management

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Mike K. P. So, Amanda M. Y. Chu, Cliff C. Y. Lo, Chun Yin Ip
{"title":"Volatility and dynamic dependence modeling: Review, applications, and financial risk management","authors":"Mike K. P. So, Amanda M. Y. Chu, Cliff C. Y. Lo, Chun Yin Ip","doi":"10.1002/wics.1567","DOIUrl":null,"url":null,"abstract":"Since the introduction of ARCH models close to 40 years ago, a wide range of models for volatility estimation and prediction have been developed and integrated into asset allocation, financial derivative pricing, and financial risk management. Research has also been very active in extending volatility modeling to dependence modeling and in developing our understanding of risk and uncertainty in financial systems. This paper presents a review on the statistical modeling on volatility and dynamic dependence of financial returns. In addition, we present a real data example using a time‐varying copula model to estimate the dynamic dependence of stock returns. Research on volatility and dynamic dependence modeling will continue to encounter statistical and computational challenges; it is necessary to persist in dealing with the 3H (high dimension, high frequency, high complexity) paradigm in modeling.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1567","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1567","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

Since the introduction of ARCH models close to 40 years ago, a wide range of models for volatility estimation and prediction have been developed and integrated into asset allocation, financial derivative pricing, and financial risk management. Research has also been very active in extending volatility modeling to dependence modeling and in developing our understanding of risk and uncertainty in financial systems. This paper presents a review on the statistical modeling on volatility and dynamic dependence of financial returns. In addition, we present a real data example using a time‐varying copula model to estimate the dynamic dependence of stock returns. Research on volatility and dynamic dependence modeling will continue to encounter statistical and computational challenges; it is necessary to persist in dealing with the 3H (high dimension, high frequency, high complexity) paradigm in modeling.
波动性和动态依赖性建模:综述、应用和财务风险管理
自推出ARCH模型以来,已接近40 多年前,已经开发了一系列用于波动性估计和预测的模型,并将其集成到资产配置、金融衍生品定价和金融风险管理中。在将波动性建模扩展到依赖性建模以及发展我们对金融系统风险和不确定性的理解方面,研究也非常活跃。本文对金融收益的波动性和动态依赖性的统计建模进行了综述。此外,我们还提供了一个使用时变copula模型来估计股票收益动态相关性的真实数据示例。波动性和动态相关性建模研究将继续面临统计和计算方面的挑战;在建模中必须坚持处理3H(高维、高频率、高复杂性)范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信