{"title":"Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization","authors":"Murinto Prahara, E.I.H. Ujianto","doi":"10.15849/ijasca.221128.05","DOIUrl":null,"url":null,"abstract":"Abstract The image segmentatation technique that is often used is thresholding. Image segmentation is a process of dividing the image into different regions according to their similar characteristics. This research proposes a multilevel thresholding algorithm using modified particle swarm optimization to solve a segmentation problem. The threshold optimal values are determined by maximizing Otsu’s objective function using optimization technique namely particle swarm optimization based on the logarithmic decreasing inertia weight (LogDIWPSO). The proposed method reduces the computational time to find the optimum thresholds of multilevel thresholding which evaluated on several grayscale images. A detailed comparison analysis with other multilevel thresholding based techniques namely particle swarm optimization (PSO), iterative particle swarm optimization (IPSO), and genetic algorithms (GA), From the experiments, Modified particle swarm optimization (MoPSO) produces better performance compared to the other methods in terms of fitness value, robustness and convergence. Therefore, it can be concluded that MoPSO is a good approach in finding the optimal threshold value. Keywords: grayscale image, inertia weight, image segmentation, particle swarm optimization.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.221128.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The image segmentatation technique that is often used is thresholding. Image segmentation is a process of dividing the image into different regions according to their similar characteristics. This research proposes a multilevel thresholding algorithm using modified particle swarm optimization to solve a segmentation problem. The threshold optimal values are determined by maximizing Otsu’s objective function using optimization technique namely particle swarm optimization based on the logarithmic decreasing inertia weight (LogDIWPSO). The proposed method reduces the computational time to find the optimum thresholds of multilevel thresholding which evaluated on several grayscale images. A detailed comparison analysis with other multilevel thresholding based techniques namely particle swarm optimization (PSO), iterative particle swarm optimization (IPSO), and genetic algorithms (GA), From the experiments, Modified particle swarm optimization (MoPSO) produces better performance compared to the other methods in terms of fitness value, robustness and convergence. Therefore, it can be concluded that MoPSO is a good approach in finding the optimal threshold value. Keywords: grayscale image, inertia weight, image segmentation, particle swarm optimization.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.