{"title":"Prediction of peak cladding temperature in a three-loop pressurised water reactor with accident- tolerant fuel during loss-of-coolant accident","authors":"A. Agung","doi":"10.1504/IJNEST.2018.10015409","DOIUrl":null,"url":null,"abstract":"Safety analysis of a PWR fuelled with ATF (Accident-Tolerant Fuel) has been performed at LB-LOCA condition. The ATF being used is uranium silicide (U3Si2) and FCMF (Fully Ceramic Microencapsulated Fuel) with silicon carbide (SiC) and FeCrAl alloy as a cladding material. The objective of this research is to obtain dynamic characteristics of ATF-fuelled PWR at LB-LOCA condition. RELAP5-3D system code was used to model the reactor and simulate the transient. A safe shutdown of the reactor was assumed after a depressurisation following a double-ended guillotine breach in the main pipe. The results of simulations show that during LB-LOCA with partially functioning ECCS, the transient PCTs were far below the maximum allowable limit. The use of ATF could decrease the maximum transient PCT. It is shown that U3Si2 fuel with FeCrAl cladding has the minimum PCT transient and the shortest quench time to steady state condition after transient initiation.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"12 1","pages":"196"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2018.10015409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Safety analysis of a PWR fuelled with ATF (Accident-Tolerant Fuel) has been performed at LB-LOCA condition. The ATF being used is uranium silicide (U3Si2) and FCMF (Fully Ceramic Microencapsulated Fuel) with silicon carbide (SiC) and FeCrAl alloy as a cladding material. The objective of this research is to obtain dynamic characteristics of ATF-fuelled PWR at LB-LOCA condition. RELAP5-3D system code was used to model the reactor and simulate the transient. A safe shutdown of the reactor was assumed after a depressurisation following a double-ended guillotine breach in the main pipe. The results of simulations show that during LB-LOCA with partially functioning ECCS, the transient PCTs were far below the maximum allowable limit. The use of ATF could decrease the maximum transient PCT. It is shown that U3Si2 fuel with FeCrAl cladding has the minimum PCT transient and the shortest quench time to steady state condition after transient initiation.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.