Carleson perturbations for the regularity problem

IF 1.3 2区 数学 Q1 MATHEMATICS
Zanbing Dai, J. Feneuil, S. Mayboroda
{"title":"Carleson perturbations for the regularity problem","authors":"Zanbing Dai, J. Feneuil, S. Mayboroda","doi":"10.4171/rmi/1401","DOIUrl":null,"url":null,"abstract":". We prove that the solvability of the regularity problem in L q ( ∂ Ω) is stable under Carleson perturbations. If the perturbation is small, then the solvability is preserved in the same L q , and if the perturbation is large, the regularity problem is solvable in L r for some other r ∈ (1 , ∞ ). We extend an earlier result from Kenig and Pipher to very general unbounded domains, possibly with lower dimensional boundaries as in the theory developed by Guy David and the last two authors. To be precise, we only need the domain to have non-tangential access to its Ahlfors regular boundary, together with a notion of gradient on the boundary.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

. We prove that the solvability of the regularity problem in L q ( ∂ Ω) is stable under Carleson perturbations. If the perturbation is small, then the solvability is preserved in the same L q , and if the perturbation is large, the regularity problem is solvable in L r for some other r ∈ (1 , ∞ ). We extend an earlier result from Kenig and Pipher to very general unbounded domains, possibly with lower dimensional boundaries as in the theory developed by Guy David and the last two authors. To be precise, we only need the domain to have non-tangential access to its Ahlfors regular boundary, together with a notion of gradient on the boundary.
正则问题的Carleson摄动
.我们证明了正则性问题在Lq(⏴Ω) 在Carleson扰动下是稳定的。如果扰动很小,则在相同的Lq中保持可解性;如果扰动很大,则对于其他r∈(1,∞),正则性问题在Lr中是可解的。我们将Kenig和Pipher的早期结果扩展到非常一般的无界域,可能具有Guy David和最后两位作者开发的较低维边界。准确地说,我们只需要域对其Ahlfors正则边界有非切向访问,以及边界上的梯度概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信