{"title":"Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem","authors":"M. V. de Hoop, M. Lassas, Jinpeng Lu, L. Oksanen","doi":"10.1080/03605302.2023.2175215","DOIUrl":null,"url":null,"abstract":"Abstract We obtain explicit estimates on the stability of the unique continuation for a linear system of hyperbolic equations. In particular, our result applies to the elasticity system and also the Maxwell system. As an application, we study the kinematic inverse rupture problem of determining the jump in displacement and the friction force at the rupture surface, and we obtain new features on the stable unique continuation up to the rupture surface.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"286 - 314"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2175215","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We obtain explicit estimates on the stability of the unique continuation for a linear system of hyperbolic equations. In particular, our result applies to the elasticity system and also the Maxwell system. As an application, we study the kinematic inverse rupture problem of determining the jump in displacement and the friction force at the rupture surface, and we obtain new features on the stable unique continuation up to the rupture surface.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.