Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem

IF 2.1 2区 数学 Q1 MATHEMATICS
M. V. de Hoop, M. Lassas, Jinpeng Lu, L. Oksanen
{"title":"Quantitative unique continuation for the elasticity system with application to the kinematic inverse rupture problem","authors":"M. V. de Hoop, M. Lassas, Jinpeng Lu, L. Oksanen","doi":"10.1080/03605302.2023.2175215","DOIUrl":null,"url":null,"abstract":"Abstract We obtain explicit estimates on the stability of the unique continuation for a linear system of hyperbolic equations. In particular, our result applies to the elasticity system and also the Maxwell system. As an application, we study the kinematic inverse rupture problem of determining the jump in displacement and the friction force at the rupture surface, and we obtain new features on the stable unique continuation up to the rupture surface.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"286 - 314"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2175215","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We obtain explicit estimates on the stability of the unique continuation for a linear system of hyperbolic equations. In particular, our result applies to the elasticity system and also the Maxwell system. As an application, we study the kinematic inverse rupture problem of determining the jump in displacement and the friction force at the rupture surface, and we obtain new features on the stable unique continuation up to the rupture surface.
弹性系统的定量唯一延拓及其在运动学逆破裂问题中的应用
摘要我们得到了一类线性双曲方程组唯一延拓稳定性的显式估计。特别地,我们的结果适用于弹性系统,也适用于麦克斯韦系统。作为一个应用,我们研究了确定破裂面的位移跳跃和摩擦力的运动学逆破裂问题,并获得了直到破裂面的稳定唯一延拓的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信