{"title":"Robust object-oriented formulation of directed thermofluid stream networks","authors":"D. Zimmer","doi":"10.1080/13873954.2020.1757726","DOIUrl":null,"url":null,"abstract":"ABSTRACT Object-oriented formulation of thermal fluid streams often yields large non-linear equation systems whose numerical solution is difficult to achieve. This paper revisits the fundamental equations for thermal fluid streams and introduces a new term: the steady mass flow pressure . Using this term, the equations can be brought into a form where all non-linear computations are explicit. This enables a robust and object-oriented formulation of even complex architectures. The modelling of aircraft environmental control systems is presented as one possible application example.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"26 1","pages":"204 - 233"},"PeriodicalIF":1.8000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1757726","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1757726","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 9
Abstract
ABSTRACT Object-oriented formulation of thermal fluid streams often yields large non-linear equation systems whose numerical solution is difficult to achieve. This paper revisits the fundamental equations for thermal fluid streams and introduces a new term: the steady mass flow pressure . Using this term, the equations can be brought into a form where all non-linear computations are explicit. This enables a robust and object-oriented formulation of even complex architectures. The modelling of aircraft environmental control systems is presented as one possible application example.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.