Jorge A. Romero-Bustamante, Brenda M. Zurita-Herrera, M. A. Gutiérrez-Limón, E. Hernandez‐Martinez
{"title":"Robust model-based control of a packed absorption column for the natural gas sweetening process","authors":"Jorge A. Romero-Bustamante, Brenda M. Zurita-Herrera, M. A. Gutiérrez-Limón, E. Hernandez‐Martinez","doi":"10.1515/ijcre-2022-0112","DOIUrl":null,"url":null,"abstract":"Abstract The sweetening units are the most important in natural gas processing. Packed bed absorption columns are widely used in the sweetening process; however, their operation and control are not simple due to their highly non-linear behavior derived from their distributed nature and interaction between multiple physical phenomena. In this work, two robust model-based control schemes are implemented to regulate the CO2 concentration at the outlet of a packed bed absorption column in the gas sweetening process. The model of an industrial-scale absorption column and the structure of the controllers, i) control based on modeling error compensation (MEC) ideas, and ii) nonlinear model predictive control (NMPC) are described. Numerical results show that the proposed robust model-based controllers can regulate the controlled variable to the desired reference despite external disturbances, set-point changes, and uncertainties in the absorption column model.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"461 - 471"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The sweetening units are the most important in natural gas processing. Packed bed absorption columns are widely used in the sweetening process; however, their operation and control are not simple due to their highly non-linear behavior derived from their distributed nature and interaction between multiple physical phenomena. In this work, two robust model-based control schemes are implemented to regulate the CO2 concentration at the outlet of a packed bed absorption column in the gas sweetening process. The model of an industrial-scale absorption column and the structure of the controllers, i) control based on modeling error compensation (MEC) ideas, and ii) nonlinear model predictive control (NMPC) are described. Numerical results show that the proposed robust model-based controllers can regulate the controlled variable to the desired reference despite external disturbances, set-point changes, and uncertainties in the absorption column model.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.