{"title":"On Certain Generalized Bazilevic type Functions Associated with Conic Regions","authors":"K. Noor, Shujaat Ali Shah","doi":"10.22130/SCMA.2020.118014.720","DOIUrl":null,"url":null,"abstract":"Let $f$ and $g$ be analytic in the open unit disc and, for $alpha ,$ $beta geq 0$, letbegin{align*}Jleft( alpha ,beta ,f,gright) & =frac{zf^{prime }(z)}{f^{1-alpha}(z)g^{alpha }(z)}+beta left( 1+frac{zf^{prime prime }(z)}{f^{prime}(z)}right) -beta left( 1-alpha right) frac{zf^{prime }(z)}{f(z)} \\& quad -alpha beta frac{zg^{prime }(z)}{g(z)}text{.}end{align*}The main aim of this paper is to study the class of analytic functions which map $Jleft( alpha ,beta ,f,gright) $ onto conic regions. Several interesting problems such as arc length, inclusion relationship, rate of growth of coefficient and Growth rate of Hankel determinant will be discussed.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":"17 1","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2020.118014.720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $f$ and $g$ be analytic in the open unit disc and, for $alpha ,$ $beta geq 0$, letbegin{align*}Jleft( alpha ,beta ,f,gright) & =frac{zf^{prime }(z)}{f^{1-alpha}(z)g^{alpha }(z)}+beta left( 1+frac{zf^{prime prime }(z)}{f^{prime}(z)}right) -beta left( 1-alpha right) frac{zf^{prime }(z)}{f(z)} \& quad -alpha beta frac{zg^{prime }(z)}{g(z)}text{.}end{align*}The main aim of this paper is to study the class of analytic functions which map $Jleft( alpha ,beta ,f,gright) $ onto conic regions. Several interesting problems such as arc length, inclusion relationship, rate of growth of coefficient and Growth rate of Hankel determinant will be discussed.