Compact perturbations of scalar type spectral operators

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Albrecht, B. Chevreau
{"title":"Compact perturbations of scalar type spectral operators","authors":"E. Albrecht, B. Chevreau","doi":"10.7900/jot.2020feb17.2269","DOIUrl":null,"url":null,"abstract":"We consider compact perturbations S=DΛ+K of normal diagonal operators DΛ by certain compact operators. Sufficient conditions for K to ensure the existence of non-trivial hyperinvariant subspaces for S have recently been obtained by Foia\\c{s} et al. in C.\\ Foia\\c{s}, I.B.\\ Jung, E.\\ Ko, C. Pearcy, \\textit{J.\\ Funct. Anal.} \\textbf{253}(2007), 628--646, C.\\ Foia\\c{s}, I.B.\\ Jung, E.\\ Ko, C.~Pearcy, \\textit{Indiana Univ.\\ Math.\\ J.} \\textbf{57}(2008), 2745--2760, {C.\\ Foia\\c{s}, I.B.\\ Jung, E.\\ Ko, C.Pearcy}, \\textit{J.\\ Math.\\ Anal.\\ Appl.} \\textbf{375}(2011), 602--609 (followed by Fang--Xia \\textit{J.\\ Funct. Anal} \\textbf{263}(2012), 135-1377, and Klaja \\textit{J.\\ Operator Theory} \\textbf{73}(2015), 127--142, by using certain spectral integrals along straight lines through the spectrum of S. In this note, the authors use circular cuts and get positive results under less restrictive local conditions for K.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020feb17.2269","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider compact perturbations S=DΛ+K of normal diagonal operators DΛ by certain compact operators. Sufficient conditions for K to ensure the existence of non-trivial hyperinvariant subspaces for S have recently been obtained by Foia\c{s} et al. in C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C. Pearcy, \textit{J.\ Funct. Anal.} \textbf{253}(2007), 628--646, C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.~Pearcy, \textit{Indiana Univ.\ Math.\ J.} \textbf{57}(2008), 2745--2760, {C.\ Foia\c{s}, I.B.\ Jung, E.\ Ko, C.Pearcy}, \textit{J.\ Math.\ Anal.\ Appl.} \textbf{375}(2011), 602--609 (followed by Fang--Xia \textit{J.\ Funct. Anal} \textbf{263}(2012), 135-1377, and Klaja \textit{J.\ Operator Theory} \textbf{73}(2015), 127--142, by using certain spectral integrals along straight lines through the spectrum of S. In this note, the authors use circular cuts and get positive results under less restrictive local conditions for K.
标量型谱算子的紧摄动
我们用某些紧算子考虑正常对角算子DΛ的紧摄动S=DΛ+K。最近,Foia \c{s}等人在C. Foia \c{s}, I.B. Jung, E. Ko, C. Pearcy, \textit{J. Funct中得到了K保证S的非平凡超不变子空间存在的充分条件}。《数学》\textbf{253}(2007),628—646,C. Foia \c{s}, I.B. Jung, E. Ko, C. Pearcy,\textit{印第安纳大学数学。J.}\textbf{57}(2008), 2745—2760,{C. Foia\c{s}, I.B. Jung, E. Ko, C. pearcy, }\textit{J. Math。分析的[j]}\textbf{.}中国科学:自然科学,2011(5),349 - \textit{349。Anal}\textbf{263}(2012), 135-1377,和Klaja \textit{J.算子理论}\textbf{73}(2015),127- 142,通过使用s的谱沿直线的某些谱积分。在这篇笔记中,作者使用圆形切割并在较少限制的局部条件下得到K的正结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信