Tianhong Zhao, Zhengdong Huang, Wei Tu, F. Biljecki, Long Chen
{"title":"Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus","authors":"Tianhong Zhao, Zhengdong Huang, Wei Tu, F. Biljecki, Long Chen","doi":"10.1080/13658816.2023.2203218","DOIUrl":null,"url":null,"abstract":"Abstract The accurate prediction of travel demand by bus is crucial for effective urban mobility demand management. However, most models of travel demand prediction by bus tend to focus on the bus’s spatiotemporal dependencies, while ignoring the interactions between buses and other transportation modes, such as metros and taxis. We propose a Multiview Spatiotemporal Graph Neural Network (MSTGNN) model to predict short-term travel demand by bus. It emphasizes the ability to capture the interaction dependencies among the travel demand of buses, metros, and taxis. Firstly, a multiview graph consisting of bus, metro, and taxi views is constructed, with each view containing both a local and global graph. Secondly, a multiview attention-based temporal graph convolution module is developed to capture spatiotemporal and cross-view interaction dependencies among different transport modes. Especially, to address the uneven spatial distributions of features in multiview learning, the cross-view spatial feature consistency loss is introduced as an auxiliary loss. Finally, we conduct intensive experiments using a real-world dataset from Shenzhen, China. The results demonstrate that our proposed MSTGNN model performs better than the existing models. Ablation experiments validate the contributions of various modes of transportation to the improvement of the model’s performance.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1555 - 1581"},"PeriodicalIF":4.3000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2203218","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The accurate prediction of travel demand by bus is crucial for effective urban mobility demand management. However, most models of travel demand prediction by bus tend to focus on the bus’s spatiotemporal dependencies, while ignoring the interactions between buses and other transportation modes, such as metros and taxis. We propose a Multiview Spatiotemporal Graph Neural Network (MSTGNN) model to predict short-term travel demand by bus. It emphasizes the ability to capture the interaction dependencies among the travel demand of buses, metros, and taxis. Firstly, a multiview graph consisting of bus, metro, and taxi views is constructed, with each view containing both a local and global graph. Secondly, a multiview attention-based temporal graph convolution module is developed to capture spatiotemporal and cross-view interaction dependencies among different transport modes. Especially, to address the uneven spatial distributions of features in multiview learning, the cross-view spatial feature consistency loss is introduced as an auxiliary loss. Finally, we conduct intensive experiments using a real-world dataset from Shenzhen, China. The results demonstrate that our proposed MSTGNN model performs better than the existing models. Ablation experiments validate the contributions of various modes of transportation to the improvement of the model’s performance.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.