A survey of band selection techniques for hyperspectral image classification

Q3 Chemistry
S. Sawant, M. Prabukumar
{"title":"A survey of band selection techniques for hyperspectral image classification","authors":"S. Sawant, M. Prabukumar","doi":"10.1255/jsi.2020.a5","DOIUrl":null,"url":null,"abstract":"Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 26

Abstract

Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.
高光谱图像分类的波段选择技术综述
高光谱图像通常包含数百个连续的光谱带,可以精确地区分各种光谱相似的类别。然而,这种高维数据也包含了高度相关和不相关的信息,导致了维数诅咒(也称为休斯现象)。在进一步分析,如土地覆盖分类和目标检测之前,有必要减少这些波段。波段选择是减少高光谱数据大小、克服地物分类中维数问题的有效方法。针对分类任务,本文对波段选择技术进行了广泛而全面的调查,描述了方法的分类、使用的方法论、不同的搜索方法和各种技术难点,以及它们的性能。我们的目的是强调在高光谱图像分类的波段选择技术方面取得的进展,并确定未来工作的可能途径,以便在实时操作中实现更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信