{"title":"Effect of Joule heating on steady MHD convective micropolar fluid over a stretching/shrinking sheet with slip flow model","authors":"A.P. Baitharu, S. Sahoo, G.C. Dash","doi":"10.3329/jname.v18i2.55253","DOIUrl":null,"url":null,"abstract":"The effect of joule heating on steady two dimensional flow of an incompressible micropolar fluid over a flat deformable sheet is analyzed when the sheet is stretched with a slip in its own plane. The effects of first and second order slips with dissipative heat energy are considered in the present study. The numerical solution to coupled non-linear differential equations is obtained using the Runge-Kutta method of fourth order with shooting technique. The important findings of the present study are: Due to shrinking effect, temperature increases more than that of stretching which is analogous to contraction and expansion forming the basis of heat engine, transporting thermal energy to mechanical energy. The thermal buoyancy overpowers the inertia force. The second order slip is favorable for flow stability in both stretching and shrinking of the deformable surface.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.55253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The effect of joule heating on steady two dimensional flow of an incompressible micropolar fluid over a flat deformable sheet is analyzed when the sheet is stretched with a slip in its own plane. The effects of first and second order slips with dissipative heat energy are considered in the present study. The numerical solution to coupled non-linear differential equations is obtained using the Runge-Kutta method of fourth order with shooting technique. The important findings of the present study are: Due to shrinking effect, temperature increases more than that of stretching which is analogous to contraction and expansion forming the basis of heat engine, transporting thermal energy to mechanical energy. The thermal buoyancy overpowers the inertia force. The second order slip is favorable for flow stability in both stretching and shrinking of the deformable surface.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.