Computation of the steady-state probability of Markov chain evolving on a mixed state space

IF 0.8 Q3 STATISTICS & PROBABILITY
Az-eddine Zakrad, A. Nasroallah
{"title":"Computation of the steady-state probability of Markov chain evolving on a mixed state space","authors":"Az-eddine Zakrad, A. Nasroallah","doi":"10.1515/mcma-2023-2003","DOIUrl":null,"url":null,"abstract":"Abstract The partitioning algorithm is an iterative procedure that computes explicitly the steady-state probability of a finite Markov chain 𝑋. In this paper, we propose to adapt this algorithm to the case where the state space E := C ∪ D E:=C\\cup D is composed of a continuous part 𝐶 and a finite part 𝐷 such that C ∩ D = ∅ C\\cap D=\\emptyset . In this case, the steady-state probability 𝜋 of 𝑋 is a convex combination of two steady-state probabilities π C \\pi_{C} and π D \\pi_{D} of two Markov chains on 𝐶 and 𝐷 respectively. The obtained algorithm allows to compute explicitly π D \\pi_{D} . If π C \\pi_{C} cannot be computed explicitly, our algorithm approximates it by numerical resolution of successive integral equations. Some numerical examples are studied to show the usefulness and proper functioning of our proposal.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The partitioning algorithm is an iterative procedure that computes explicitly the steady-state probability of a finite Markov chain 𝑋. In this paper, we propose to adapt this algorithm to the case where the state space E := C ∪ D E:=C\cup D is composed of a continuous part 𝐶 and a finite part 𝐷 such that C ∩ D = ∅ C\cap D=\emptyset . In this case, the steady-state probability 𝜋 of 𝑋 is a convex combination of two steady-state probabilities π C \pi_{C} and π D \pi_{D} of two Markov chains on 𝐶 and 𝐷 respectively. The obtained algorithm allows to compute explicitly π D \pi_{D} . If π C \pi_{C} cannot be computed explicitly, our algorithm approximates it by numerical resolution of successive integral equations. Some numerical examples are studied to show the usefulness and proper functioning of our proposal.
混合状态空间上马尔可夫链演化的稳态概率计算
分划算法是显式计算有限马尔可夫链稳态概率的迭代过程𝑋。在本文中,我们提出将该算法应用于状态空间E:=C∪D E:=C \cup D由连续部分和有限部分𝐷组成,使得C∩D=∅C \cap D= \emptyset。在这种情况下,稳态概率𝑋分别是两条马尔可夫链的两个稳态概率π C \pi _C{和π }D \pi _D{的凸组合。得到的算法允许显式计算π D }\pi _D{。如果π C }\pi _C{不能显式计算,我们的算法通过连续积分方程的数值解析近似它。通过数值算例分析,说明了该方法的有效性和良好的功能。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信