Sharp superlevel set estimates for small cap decouplings of the parabola

IF 1.3 2区 数学 Q1 MATHEMATICS
Yu Fu, L. Guth, Dominique Maldague
{"title":"Sharp superlevel set estimates for small cap decouplings of the parabola","authors":"Yu Fu, L. Guth, Dominique Maldague","doi":"10.4171/rmi/1393","DOIUrl":null,"url":null,"abstract":"We prove sharp bounds for the size of superlevel sets {x ∈ R : |f(x)| > α} where α > 0 and f : R → C is a Schwartz function with Fourier transform supported in an R-neighborhood of the truncated parabola P. These estimates imply the small cap decoupling theorem for P from [DGW20] and the canonical decoupling theorem for P from [BD15]. New (l, L) small cap decoupling inequalities also follow from our sharp level set estimates. In this paper, we further develop the high/low frequency proof of decoupling for the parabola [GMW20] to prove sharp level set estimates which recover and refine the small cap decoupling results for the parabola in [DGW20]. We begin by describing the problem and our results in terms of exponential sums. The main results in full generality are in §1. For N ≥ 1, R ∈ [N,N2], and 2 ≤ p, let D(N,R, p) denote the smallest constant so that","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1393","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We prove sharp bounds for the size of superlevel sets {x ∈ R : |f(x)| > α} where α > 0 and f : R → C is a Schwartz function with Fourier transform supported in an R-neighborhood of the truncated parabola P. These estimates imply the small cap decoupling theorem for P from [DGW20] and the canonical decoupling theorem for P from [BD15]. New (l, L) small cap decoupling inequalities also follow from our sharp level set estimates. In this paper, we further develop the high/low frequency proof of decoupling for the parabola [GMW20] to prove sharp level set estimates which recover and refine the small cap decoupling results for the parabola in [DGW20]. We begin by describing the problem and our results in terms of exponential sums. The main results in full generality are in §1. For N ≥ 1, R ∈ [N,N2], and 2 ≤ p, let D(N,R, p) denote the smallest constant so that
抛物线小帽解耦的夏普超水平集估计
我们证明了超级别集{x∈R:|f(x)|>α}的大小的锐界,其中α>0和f:R→ C是在截断抛物线P的R邻域中支持傅立叶变换的Schwartz函数。这些估计暗示了来自[DGW20]的P的小帽解耦定理和来自[BD15]的P的正则解耦定理。新的(l,l)小盘解耦不等式也来自于我们的尖锐水平集估计。在本文中,我们进一步发展了抛物线的高频/低频解耦证明[GMW20],以证明尖锐的水平集估计,该估计恢复并细化了[DGW20]中抛物线的小帽解耦结果。我们首先用指数和来描述这个问题和我们的结果。全面通用的主要结果见§1。对于N≥1,R∈[N,N2],并且2≤p,设D(N,R,p)表示最小常数,使得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信