Hongbin Liu, Guang Hao Low, Damian S. Steiger, Thomas Häner, Markus Reiher, Matthias Troyer
{"title":"Prospects of quantum computing for molecular sciences","authors":"Hongbin Liu, Guang Hao Low, Damian S. Steiger, Thomas Häner, Markus Reiher, Matthias Troyer","doi":"10.1186/s41313-021-00039-z","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular science is governed by the dynamics of electrons and atomic nuclei, and by their interactions with electromagnetic fields. A faithful physicochemical understanding of these processes is crucial for the design and synthesis of chemicals and materials of value for our society and economy. Although some problems in this field can be adequately addressed by classical mechanics, many demand an explicit quantum mechanical description. Such quantum problems require a representation of wave functions that grows exponentially with system size and therefore should naturally benefit from quantum computation on a number of logical qubits that scales only linearly with system size. In this perspective, we elaborate on the potential benefits of quantum computing in the molecular sciences, i.e., in molecular physics, chemistry, biochemistry, and materials science.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-021-00039-z","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-021-00039-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Molecular science is governed by the dynamics of electrons and atomic nuclei, and by their interactions with electromagnetic fields. A faithful physicochemical understanding of these processes is crucial for the design and synthesis of chemicals and materials of value for our society and economy. Although some problems in this field can be adequately addressed by classical mechanics, many demand an explicit quantum mechanical description. Such quantum problems require a representation of wave functions that grows exponentially with system size and therefore should naturally benefit from quantum computation on a number of logical qubits that scales only linearly with system size. In this perspective, we elaborate on the potential benefits of quantum computing in the molecular sciences, i.e., in molecular physics, chemistry, biochemistry, and materials science.
期刊介绍:
Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory.
The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.