New copulas based on general partitions-of-unity (part III) — the continuous case

IF 0.8 Q4 STATISTICS & PROBABILITY
D. Pfeifer, Andreas Mändle, O. Ragulina, C. Girschig
{"title":"New copulas based on general partitions-of-unity (part III) — the continuous case","authors":"D. Pfeifer, Andreas Mändle, O. Ragulina, C. Girschig","doi":"10.1515/demo-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we discuss a natural extension of infinite discrete partition-of-unity copulas which were recently introduced in the literature to continuous partition of copulas with possible applications in risk management and other fields. We present a general simple algorithm to generate such copulas on the basis of the empirical copula from high-dimensional data sets. In particular, our constructions also allow for an implementation of positive tail dependence which sometimes is a desirable property of copula modelling, in particular for internal models under Solvency II.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"181 - 201"},"PeriodicalIF":0.8000,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0009","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract In this paper we discuss a natural extension of infinite discrete partition-of-unity copulas which were recently introduced in the literature to continuous partition of copulas with possible applications in risk management and other fields. We present a general simple algorithm to generate such copulas on the basis of the empirical copula from high-dimensional data sets. In particular, our constructions also allow for an implementation of positive tail dependence which sometimes is a desirable property of copula modelling, in particular for internal models under Solvency II.
基于单位的一般划分的新系词(第三部分)——连续情形
摘要在本文中,我们讨论了最近在文献中引入的单位Copula的无限离散划分到Copula的连续划分的一个自然扩展,它可能在风险管理和其他领域中应用。在高维数据集经验copula的基础上,我们提出了一种生成此类copula的通用简单算法。特别是,我们的构造还允许实现正尾部依赖性,这有时是copula建模的一个理想性质,特别是对于Solvency II下的内部模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信