Orbital counting for some convergent groups

Pub Date : 2020-06-26 DOI:10.5802/AIF.3335
M. Peigné, S. Tapie, Pierre Vidotto
{"title":"Orbital counting for some convergent groups","authors":"M. Peigné, S. Tapie, Pierre Vidotto","doi":"10.5802/AIF.3335","DOIUrl":null,"url":null,"abstract":"— We present examples of geometrically finite manifolds with pinched negative curvature, whose geodesic flow has infinite non-ergodic Bowen–Margulis measure and whose Poincaré series converges at the critical exponent δΓ. We obtain an explicit asymptotic for their orbital growth function. Namely, for any α ∈ ]1, 2[ and any smooth slowly varying function L : R → (0,+∞), we construct N dimensional Hadamard manifolds (X, g) of negative and pinched curvature, whose group of oriented isometries possesses convergent geometrically finite subgroups Γ such that, as R→ +∞, NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o) L(R) Rα eΓ, for some CΓ(o) > 0 depending on the base point o. Résumé. — Nous construisons des variétés géométriquement finies à courbure strictement négative pincée, dont le flot géodésique possède une mesure de BowenMargulis non ergodique infinie, et dont la série de Poincaré converge à l’exposant δΓ, et nous obtenons une estimation précise du comportement asymptotique de la fonction orbitale de ce groupe. Plus précisément, pour tout α ∈ ]1, 2[ et toute fonction à variations lentes L : R → (0,+∞), nous construisons des variétés de Hadamard (X, g) de dimension N > 2 dont le groupe des isométries qui préservent l’orientation possède des sous-groupes discrets et géométriquement finis Γ tels que, lorsque R→ +∞, NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o) L(R) Rα eΓ, où CΓ(o) est une constante strictement positive qui dépend du point o.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/AIF.3335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

— We present examples of geometrically finite manifolds with pinched negative curvature, whose geodesic flow has infinite non-ergodic Bowen–Margulis measure and whose Poincaré series converges at the critical exponent δΓ. We obtain an explicit asymptotic for their orbital growth function. Namely, for any α ∈ ]1, 2[ and any smooth slowly varying function L : R → (0,+∞), we construct N dimensional Hadamard manifolds (X, g) of negative and pinched curvature, whose group of oriented isometries possesses convergent geometrically finite subgroups Γ such that, as R→ +∞, NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o) L(R) Rα eΓ, for some CΓ(o) > 0 depending on the base point o. Résumé. — Nous construisons des variétés géométriquement finies à courbure strictement négative pincée, dont le flot géodésique possède une mesure de BowenMargulis non ergodique infinie, et dont la série de Poincaré converge à l’exposant δΓ, et nous obtenons une estimation précise du comportement asymptotique de la fonction orbitale de ce groupe. Plus précisément, pour tout α ∈ ]1, 2[ et toute fonction à variations lentes L : R → (0,+∞), nous construisons des variétés de Hadamard (X, g) de dimension N > 2 dont le groupe des isométries qui préservent l’orientation possède des sous-groupes discrets et géométriquement finis Γ tels que, lorsque R→ +∞, NΓ(R) := ]{γ ∈ Γ | d(o, γ · o) 6 R} ∼ CΓ(o) L(R) Rα eΓ, où CΓ(o) est une constante strictement positive qui dépend du point o.
分享
查看原文
一些收敛群的轨道计数
-我们给出了具有压缩负曲率的几何有限流形的例子,这些流形的测地线流具有无限的非遍历鲍文-马古利测度,并且其poincar级数收敛于临界指数δΓ。我们得到了它们的轨道生长函数的显式渐近。即,对于任意α∈]1,2[和任意光滑慢变函数L: R→(0,+∞),我们构造了负缩曲率的N维Hadamard流形(X, g),其有向等距群具有收敛的几何有限子群Γ,使得,当R→+∞时,NΓ(R):=]{Γ∈Γ | d(o, Γ·o) 6 R} ~ CΓ(o) L(R) Rα eΓ,对于某些CΓ(o) > 0依赖于基点o. r sum。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -+ precisement倒兜售α∈]1、2 (et吹捧函数变化“lentes L: R→(0,+∞),常识construisons des varietes德阿达玛德维(X, g) N > 2不要剩下的groupe des等距preservent L 'orientation possede des sous-groupes离散等geometriquement终结Γ运输,当R→+∞,NΓ(R): =]{γ∈Γ| d (o,γ·o) 6 R}∼CΓ(o)左(右)RαeΓ,或者CΓ(o)是一个常数strictement积极依靠o du点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信