Hinde Laghfiri, N. Lamdouar, S. Abbas, El Mostapha Boudi
{"title":"Periodic wave impeding barrier as a countermeasure of ground vibration","authors":"Hinde Laghfiri, N. Lamdouar, S. Abbas, El Mostapha Boudi","doi":"10.1177/16878132231190994","DOIUrl":null,"url":null,"abstract":"Single wave impeding barrier has been widely evaluated to attenuate vibrations. Nevertheless, research on the utilization of multiple-layer wave impeding barriers is extremely limited since most studies focus on periodic foundations and periodic piles. In this work, the attenuation of ground vibration utilizing a periodic wave-impeding barrier composed of rigid and elastic materials was investigated by applying improved plane wave expansion approach using the notion of phononic crystals, then the simulation of the proposed barrier is presented to demonstrate its relevance to the real case, where it can isolate more than 75% of vibration induced by El Centro earthquake. The effects of the key factors on the attenuation zone of the proposed wave impeding barrier are evaluated by conducting a thorough parametric study. Numerical results demonstrate that the mitigation efficiency at low frequencies increased as Young’s modulus of elastic material increased and as the density of two materials and periodic constant decreased. In addition, the proposed ANN model showed high accuracy to predict those parameters in order to choose them according to the desired attenuation zone. The findings of this study will aid the stakeholders in selecting the optimal geometrical and physical characteristics of the suggested barrier to attenuate vibration.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231190994","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Single wave impeding barrier has been widely evaluated to attenuate vibrations. Nevertheless, research on the utilization of multiple-layer wave impeding barriers is extremely limited since most studies focus on periodic foundations and periodic piles. In this work, the attenuation of ground vibration utilizing a periodic wave-impeding barrier composed of rigid and elastic materials was investigated by applying improved plane wave expansion approach using the notion of phononic crystals, then the simulation of the proposed barrier is presented to demonstrate its relevance to the real case, where it can isolate more than 75% of vibration induced by El Centro earthquake. The effects of the key factors on the attenuation zone of the proposed wave impeding barrier are evaluated by conducting a thorough parametric study. Numerical results demonstrate that the mitigation efficiency at low frequencies increased as Young’s modulus of elastic material increased and as the density of two materials and periodic constant decreased. In addition, the proposed ANN model showed high accuracy to predict those parameters in order to choose them according to the desired attenuation zone. The findings of this study will aid the stakeholders in selecting the optimal geometrical and physical characteristics of the suggested barrier to attenuate vibration.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering