Frank Alejandro Hincapié-Londoño, Jhonatan Stiven García-Guevara, E. M. Toro-Ocampo
{"title":"Resolución del problema integrado de enrutamiento y gestión de inventarios con múltiples vehículos mediante programación lineal entera mixta","authors":"Frank Alejandro Hincapié-Londoño, Jhonatan Stiven García-Guevara, E. M. Toro-Ocampo","doi":"10.14483/23448393.18961","DOIUrl":null,"url":null,"abstract":"Contexto: El control y distribución de inventarios son procesos claves en la pérdida tanto de eficiencia como de eficacia en el campo de la logística, a nivel global. Según el Departamento Nacional de Planeación de Colombia, en el año 2020, los rubros de transporte, almacenamiento e inventarios correspondieron al 73,9 % del costo logístico total. La resolución del problema de enrutamiento inventario con múltiples vehículos (IRP) representa una alternativa para hacer que los tiempos de ciclo sean más cortos, más flexibles y menos costosos.\nMétodo: En este artículo se describen y comparan modelos matemáticos de la literatura para el problema base, adaptándolo a su variante con múltiples vehículos y resolviéndolo a través modelos de programación lineal entera mixta, mediante la solución de instancias de baja y media complejidad matemática, planteando dos maneras de gestionar el inventario y tres formas de eliminar la creación de sub-tours. Para obtener los resultados se utiliza el software AMPL en un computador con procesador Intel Core i5-5200U CPU @ 2.2 GHz y 4 GB de RAM, considerando un tiempo máximo de ejecución de una hora.\nResultados: El modelo de flujos muestra el mejor desempeño en cuanto a tiempos computacionales y calidad de la respuesta con respecto a la política de máximo nivel (ML), y la variante MTZ es el segundo mejor modelo. Por último, la variación general reporta mayores tiempos de ejecución y valores GAP más altos. Los modelos presentan buen desempeño para instancias de pequeño y mediano tamaño.\nConclusiones: En esta investigación se presenta una metodología general que puede ser adaptada a diferentes aplicaciones del problema integrado de inventarios y enrutamiento con múltiples vehículos. Se comprobó que las respuestas generadas son de buena calidad, destacando la eliminación de sub-tours por medio del modelo de flujos y la gestión de inventarios bajo la política ML. Los trabajos futuros deben encaminarse en busca de nuevas alternativas a la optimización exacta, tales como las heurísticas o metaheurísticas, que permitan estar lo más cerca posible del óptimo en tiempos de computación más cortos. Además, se podrían considerar demandas estocásticas y el manejo de productos perecederos, entre otros.","PeriodicalId":41509,"journal":{"name":"Ingenieria","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/23448393.18961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Contexto: El control y distribución de inventarios son procesos claves en la pérdida tanto de eficiencia como de eficacia en el campo de la logística, a nivel global. Según el Departamento Nacional de Planeación de Colombia, en el año 2020, los rubros de transporte, almacenamiento e inventarios correspondieron al 73,9 % del costo logístico total. La resolución del problema de enrutamiento inventario con múltiples vehículos (IRP) representa una alternativa para hacer que los tiempos de ciclo sean más cortos, más flexibles y menos costosos.
Método: En este artículo se describen y comparan modelos matemáticos de la literatura para el problema base, adaptándolo a su variante con múltiples vehículos y resolviéndolo a través modelos de programación lineal entera mixta, mediante la solución de instancias de baja y media complejidad matemática, planteando dos maneras de gestionar el inventario y tres formas de eliminar la creación de sub-tours. Para obtener los resultados se utiliza el software AMPL en un computador con procesador Intel Core i5-5200U CPU @ 2.2 GHz y 4 GB de RAM, considerando un tiempo máximo de ejecución de una hora.
Resultados: El modelo de flujos muestra el mejor desempeño en cuanto a tiempos computacionales y calidad de la respuesta con respecto a la política de máximo nivel (ML), y la variante MTZ es el segundo mejor modelo. Por último, la variación general reporta mayores tiempos de ejecución y valores GAP más altos. Los modelos presentan buen desempeño para instancias de pequeño y mediano tamaño.
Conclusiones: En esta investigación se presenta una metodología general que puede ser adaptada a diferentes aplicaciones del problema integrado de inventarios y enrutamiento con múltiples vehículos. Se comprobó que las respuestas generadas son de buena calidad, destacando la eliminación de sub-tours por medio del modelo de flujos y la gestión de inventarios bajo la política ML. Los trabajos futuros deben encaminarse en busca de nuevas alternativas a la optimización exacta, tales como las heurísticas o metaheurísticas, que permitan estar lo más cerca posible del óptimo en tiempos de computación más cortos. Además, se podrían considerar demandas estocásticas y el manejo de productos perecederos, entre otros.