Dynamic Study of SIQR-B Fractional-Order Epidemic Model of Cholera with Optimal Control Strategies in Mayo-Tsanaga Department of Cameroon Far North Region

Tchule Nguiwa, Mibaile Justin, Djaouda Moussa, G. Betchewe, A. Mohamadou
{"title":"Dynamic Study of SIQR-B Fractional-Order Epidemic Model of Cholera with Optimal Control Strategies in Mayo-Tsanaga Department of Cameroon Far North Region","authors":"Tchule Nguiwa, Mibaile Justin, Djaouda Moussa, G. Betchewe, A. Mohamadou","doi":"10.1142/s1793048020500071","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the dynamical behavior of a fractional-order model of the cholera epidemic in Mayo-Tsanaga Department. We extended the model of Lemos-Paião et al. [A. P. Lemos-Paião, C. J. Silva and D. F. M. Torres, J. Comput. Appl. Math. 16, 427 (2016)] by incorporating the contact rate [Formula: see text] by handling cholera death and optimal control strategies such as vaccination [Formula: see text], water sanitation [Formula: see text]. We provide a theoretical study of the model. We derive the basic reproduction number [Formula: see text] which determines the extinction and the persistence of the infection. We show that the disease-free equilibrium is globally asymptotically stable whenever [Formula: see text], while when [Formula: see text], the disease-free equilibrium is unstable and there exists a unique endemic equilibrium point which is locally asymptotically stable on a positively invariant region of the positive orthant. Using the sensitivity analysis, we find that the parameter related to vaccination and therapeutic treatment is more influencing the model. Theoretical results are supported by numerical simulations, which further suggest use of vaccination in endemic area. In case of a lack of necessary funding to fight again cholera, Figure 6 revealed that efforts should focus to keep contamination rate [Formula: see text] (susceptible-to-cholera death) in other to die out the disease.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1793048020500071","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793048020500071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigated the dynamical behavior of a fractional-order model of the cholera epidemic in Mayo-Tsanaga Department. We extended the model of Lemos-Paião et al. [A. P. Lemos-Paião, C. J. Silva and D. F. M. Torres, J. Comput. Appl. Math. 16, 427 (2016)] by incorporating the contact rate [Formula: see text] by handling cholera death and optimal control strategies such as vaccination [Formula: see text], water sanitation [Formula: see text]. We provide a theoretical study of the model. We derive the basic reproduction number [Formula: see text] which determines the extinction and the persistence of the infection. We show that the disease-free equilibrium is globally asymptotically stable whenever [Formula: see text], while when [Formula: see text], the disease-free equilibrium is unstable and there exists a unique endemic equilibrium point which is locally asymptotically stable on a positively invariant region of the positive orthant. Using the sensitivity analysis, we find that the parameter related to vaccination and therapeutic treatment is more influencing the model. Theoretical results are supported by numerical simulations, which further suggest use of vaccination in endemic area. In case of a lack of necessary funding to fight again cholera, Figure 6 revealed that efforts should focus to keep contamination rate [Formula: see text] (susceptible-to-cholera death) in other to die out the disease.
喀麦隆远北地区Mayo-Tsanaga省SIQR-B分数阶霍乱流行模型与最优控制策略的动态研究
本文研究了美约-津永省霍乱流行的分数阶模型的动力学行为。我们扩展了lemos - pai等人的模型[A]。P. lemos - pai o, C. J. Silva, D. F. M. Torres, J. Comput。达成。通过处理霍乱死亡和疫苗接种[公式:见文本]、水卫生[公式:见文本]等最佳控制策略,结合接触率[公式:见文本]。我们对该模型进行了理论研究。我们推导出基本繁殖数[公式:见文本],它决定了感染的灭绝和持续。我们证明了当[公式:见文]时,无病平衡点是全局渐近稳定的,而当[公式:见文]时,无病平衡点是不稳定的,并且存在一个唯一的地方性平衡点,该平衡点在正正交的正不变区域上是局部渐近稳定的。通过敏感性分析,我们发现与疫苗接种和治疗相关的参数对模型的影响更大。数值模拟结果支持了理论结果,进一步表明在流行地区应接种疫苗。图6显示,在缺乏必要资金再次抗击霍乱的情况下,应集中努力保持污染率[公式:见文](易受霍乱影响的死亡率)在其他方面,以消灭这种疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信