T. Buckmaster, Gonzalo Cao-Labora, Javier G'omez-Serrano
{"title":"Smooth self-similar imploding profiles to 3D compressible Euler","authors":"T. Buckmaster, Gonzalo Cao-Labora, Javier G'omez-Serrano","doi":"10.1090/qam/1661","DOIUrl":null,"url":null,"abstract":"The aim of this note is to present the recent results by Buckmaster, Cao-Labora, and Gómez-Serrano [Smooth imploding solutions for 3D compressible fluids, Arxiv preprint arXiv:2208.09445, 2022] concerning the existence of “imploding singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [Invent. Math. 227 (2022), pp. 247–413; Ann. of Math. (2) 196 (2022), pp. 567–778; Ann. of Math. (2) 196 (2022), pp. 779–889] and proves the existence of self-similar profiles for all adiabatic exponents \n\n \n \n γ\n >\n 1\n \n \\gamma >1\n \n\n in the case of Euler; as well as proving asymptotic self-similar blow-up for \n\n \n \n γ\n =\n \n 7\n 5\n \n \n \\gamma =\\frac 75\n \n\n in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation, the solution is constructed to have density bounded away from zero and constant at infinity, the first example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible Euler equations.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1661","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this note is to present the recent results by Buckmaster, Cao-Labora, and Gómez-Serrano [Smooth imploding solutions for 3D compressible fluids, Arxiv preprint arXiv:2208.09445, 2022] concerning the existence of “imploding singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [Invent. Math. 227 (2022), pp. 247–413; Ann. of Math. (2) 196 (2022), pp. 567–778; Ann. of Math. (2) 196 (2022), pp. 779–889] and proves the existence of self-similar profiles for all adiabatic exponents
γ
>
1
\gamma >1
in the case of Euler; as well as proving asymptotic self-similar blow-up for
γ
=
7
5
\gamma =\frac 75
in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation, the solution is constructed to have density bounded away from zero and constant at infinity, the first example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible Euler equations.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.