Xiaolan Han, Dong Huang, Sang Eun-Lee, Jong Hoon-Yang
{"title":"Artificial Intelligence-Oriented User Interface Design and Human Behavior Recognition based on Human–Computer Nature Interaction","authors":"Xiaolan Han, Dong Huang, Sang Eun-Lee, Jong Hoon-Yang","doi":"10.1142/s0219843622500207","DOIUrl":null,"url":null,"abstract":"This work is to explore the application of intelligent algorithms based on deep learning in human–computer interaction systems, hoping to promote the development of human–computer interaction systems in the field of behavior recognition. Firstly, the design scheme of the human–computer interaction system is presented, and the establishment of the robot visual positioning system is emphasized. Then, the fast-region convolutional neural networks (fast-RCNN) algorithm is introduced, and it is combined with deep convolutional residual network (ResNet101). A candidate region extraction algorithm based on ResNet and long short-term memory network is proposed, and a residual network (ResNet) for spatial context memory is proposed. Both algorithms are employed in human–computer interaction systems. Finally, the performance of the algorithm and the human–computer interaction system are analyzed and characterized. The results show that the proposed candidate region extraction algorithm can significantly reduce the loss value of training set and test set after training. In addition, the corresponding accuracy, recall, and [Formula: see text]-value of the model are all above 0.98, which proves that the model has a good detection accuracy. Spatial context memory ResNet shows good accuracy in speech expression detection. The detection accuracy of single attribute, double attribute, and multi-attribute speech expression is above 89%, and the detection accuracy is good. In summary, the human–computer interaction system shows good performance in capturing target objects, even for unlabeled objects, the corresponding grasping success rate is 95%. Therefore, this work provides a theoretical basis and reference for the application of intelligent optimization algorithm in human–computer interaction system.","PeriodicalId":50319,"journal":{"name":"International Journal of Humanoid Robotics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Humanoid Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0219843622500207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work is to explore the application of intelligent algorithms based on deep learning in human–computer interaction systems, hoping to promote the development of human–computer interaction systems in the field of behavior recognition. Firstly, the design scheme of the human–computer interaction system is presented, and the establishment of the robot visual positioning system is emphasized. Then, the fast-region convolutional neural networks (fast-RCNN) algorithm is introduced, and it is combined with deep convolutional residual network (ResNet101). A candidate region extraction algorithm based on ResNet and long short-term memory network is proposed, and a residual network (ResNet) for spatial context memory is proposed. Both algorithms are employed in human–computer interaction systems. Finally, the performance of the algorithm and the human–computer interaction system are analyzed and characterized. The results show that the proposed candidate region extraction algorithm can significantly reduce the loss value of training set and test set after training. In addition, the corresponding accuracy, recall, and [Formula: see text]-value of the model are all above 0.98, which proves that the model has a good detection accuracy. Spatial context memory ResNet shows good accuracy in speech expression detection. The detection accuracy of single attribute, double attribute, and multi-attribute speech expression is above 89%, and the detection accuracy is good. In summary, the human–computer interaction system shows good performance in capturing target objects, even for unlabeled objects, the corresponding grasping success rate is 95%. Therefore, this work provides a theoretical basis and reference for the application of intelligent optimization algorithm in human–computer interaction system.
期刊介绍:
The International Journal of Humanoid Robotics (IJHR) covers all subjects on the mind and body of humanoid robots. It is dedicated to advancing new theories, new techniques, and new implementations contributing to the successful achievement of future robots which not only imitate human beings, but also serve human beings. While IJHR encourages the contribution of original papers which are solidly grounded on proven theories or experimental procedures, the journal also encourages the contribution of innovative papers which venture into the new, frontier areas in robotics. Such papers need not necessarily demonstrate, in the early stages of research and development, the full potential of new findings on a physical or virtual robot.
IJHR welcomes original papers in the following categories:
Research papers, which disseminate scientific findings contributing to solving technical issues underlying the development of humanoid robots, or biologically-inspired robots, having multiple functionality related to either physical capabilities (i.e. motion) or mental capabilities (i.e. intelligence)
Review articles, which describe, in non-technical terms, the latest in basic theories, principles, and algorithmic solutions
Short articles (e.g. feature articles and dialogues), which discuss the latest significant achievements and the future trends in robotics R&D
Papers on curriculum development in humanoid robot education
Book reviews.