Effects of polymeric microcapsules on self-healing composites reinforced with carbon fibers: a comparative study

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
N. Veeramani, Raja Samikannu, A. Deshpande, Sheril Varghese, V. Moses
{"title":"Effects of polymeric microcapsules on self-healing composites reinforced with carbon fibers: a comparative study","authors":"N. Veeramani, Raja Samikannu, A. Deshpande, Sheril Varghese, V. Moses","doi":"10.1515/ipp-2022-4320","DOIUrl":null,"url":null,"abstract":"Abstract Three different microcapsules, namely dicyclopentadiene (DCPD)-urea formaldehyde (UF) based single-walled microcapsules, DCPD-UF-Siloxane (DCPD-UF-Si) based double-walled microcapsules and DCPD-Carbon nanotubes-UF based dual-core microcapsules were synthesized, and their corresponding self-healing composites were prepared. This paper mainly focuses on the synthesis procedure of various microcapsules and a comparative study on the effect of microcapsules over the final composite properties. The core content of the microcapsules was measured and compared with theoretical calculations. DSC & TGA analyses have shown that the novel microcapsules (DCPD-UF-Si, DCPD-CNT-UF) and their composites have better thermal stability compared to DCPD-UF microcapsules. Epoxy-carbon fiber (2 wt.%) composite specimens with three different microcapsules were tested for surface morphology, mechanical, thermal and electrical properties. SEM analysis has shown that the microcapsules have a rough outer surface and smooth inner surface. The average diameter and shell thickness of the microcapsules were measured for all types of microcapsules. Addition of double-walled and dual-core microcapsules has reduced the glass transition temperature of the composites by 10 °C. Also, SHC with DCPD-UF-Si and DCPD-CNT-UF microcapsules have shown better thermal stability (300 °C) compared to DCPD-UF microcapsules (220 °C). The incorporation of CNT based microcapsules inside the composite has also improved the electrical conductivity by 2.2 times, without compromising on self-healing efficiency (78 %). Therefore, these novel microcapsules can be potential candidates for making multifunctional polymer composites for aerospace, windmills and automotive applications.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4320","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Three different microcapsules, namely dicyclopentadiene (DCPD)-urea formaldehyde (UF) based single-walled microcapsules, DCPD-UF-Siloxane (DCPD-UF-Si) based double-walled microcapsules and DCPD-Carbon nanotubes-UF based dual-core microcapsules were synthesized, and their corresponding self-healing composites were prepared. This paper mainly focuses on the synthesis procedure of various microcapsules and a comparative study on the effect of microcapsules over the final composite properties. The core content of the microcapsules was measured and compared with theoretical calculations. DSC & TGA analyses have shown that the novel microcapsules (DCPD-UF-Si, DCPD-CNT-UF) and their composites have better thermal stability compared to DCPD-UF microcapsules. Epoxy-carbon fiber (2 wt.%) composite specimens with three different microcapsules were tested for surface morphology, mechanical, thermal and electrical properties. SEM analysis has shown that the microcapsules have a rough outer surface and smooth inner surface. The average diameter and shell thickness of the microcapsules were measured for all types of microcapsules. Addition of double-walled and dual-core microcapsules has reduced the glass transition temperature of the composites by 10 °C. Also, SHC with DCPD-UF-Si and DCPD-CNT-UF microcapsules have shown better thermal stability (300 °C) compared to DCPD-UF microcapsules (220 °C). The incorporation of CNT based microcapsules inside the composite has also improved the electrical conductivity by 2.2 times, without compromising on self-healing efficiency (78 %). Therefore, these novel microcapsules can be potential candidates for making multifunctional polymer composites for aerospace, windmills and automotive applications.
聚合物微胶囊对碳纤维增强自修复复合材料的影响:比较研究
摘要合成了基于双环戊二烯(DCPD)-脲醛(UF)的单壁微胶囊、基于DCPD-UF-硅氧烷(DCPD-UF- si)的双壁微胶囊和基于DCPD-碳纳米管-脲醛(UF)的双核微胶囊,并制备了相应的自修复复合材料。本文主要介绍了各种微胶囊的合成过程,并比较研究了微胶囊对最终复合材料性能的影响。测定了微胶囊的芯含量,并与理论计算结果进行了比较。DSC和TGA分析表明,与DCPD-UF微胶囊相比,新型微胶囊(DCPD-UF- si, DCPD-CNT-UF)及其复合材料具有更好的热稳定性。对三种不同微胶囊的环氧碳纤维(2 wt.%)复合材料试样进行了表面形貌、力学、热学和电学性能测试。SEM分析表明,微胶囊外表面粗糙,内表面光滑。测定了各类型微胶囊的平均直径和壳体厚度。双壁双芯微胶囊的加入使复合材料的玻璃化转变温度降低了10 °C。此外,与DCPD-UF微胶囊(220 °C)相比,DCPD-UF- si和DCPD-CNT-UF微胶囊的SHC表现出更好的热稳定性(300 °C)。在复合材料中加入碳纳米管微胶囊也将导电性提高了2.2倍,而不影响自愈效率(78 %)。因此,这些新型微胶囊可以成为航空航天、风车和汽车应用中多功能聚合物复合材料的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信