Subcritical bootstrap percolation via Toom contours

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Ivailo Hartarsky, R. Szab'o
{"title":"Subcritical bootstrap percolation via Toom contours","authors":"Ivailo Hartarsky, R. Szab'o","doi":"10.1214/22-ecp496","DOIUrl":null,"url":null,"abstract":"In this note we provide an alternative proof of the fact that subcritical bootstrap percolation models have a positive critical probability in any dimension. The proof relies on a recent extension [18] of the classical framework of Toom [20]. This approach is not only simpler than the original multi-scale renormalisation proof of the result in two and more dimensions [1, 2], but also gives significantly better bounds. As a byproduct, we improve the best known bounds for the stability threshold of Toom’s North-East-Center majority rule cellular automaton.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp496","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

In this note we provide an alternative proof of the fact that subcritical bootstrap percolation models have a positive critical probability in any dimension. The proof relies on a recent extension [18] of the classical framework of Toom [20]. This approach is not only simpler than the original multi-scale renormalisation proof of the result in two and more dimensions [1, 2], but also gives significantly better bounds. As a byproduct, we improve the best known bounds for the stability threshold of Toom’s North-East-Center majority rule cellular automaton.
通过Toom等值线的亚临界自举渗流
在这篇文章中,我们提供了一个替代的证据,证明亚临界自举渗流模型在任何维度上都具有正临界概率。该证明依赖于Toom[20]的经典框架的最新扩展[18]。这种方法不仅比原始的二维及二维以上结果的多尺度再规范化证明更简单[1,2],而且给出了明显更好的边界。作为副产品,我们改进了Toom的东北中心多数规则元胞自动机的稳定性阈值的最佳已知边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信