Stochastic Restricted LASSO-Type Estimator in the Linear Regression Model

IF 1 Q3 STATISTICS & PROBABILITY
Kayanan Manickavasagar, P. Wijekoon
{"title":"Stochastic Restricted LASSO-Type Estimator in the Linear Regression Model","authors":"Kayanan Manickavasagar, P. Wijekoon","doi":"10.1155/2020/7352097","DOIUrl":null,"url":null,"abstract":"Among several variable selection methods, LASSO is the most desirable estimation procedure for handling regularization and variable selection simultaneously in the high-dimensional linear regression models when multicollinearity exists among the predictor variables. Since LASSO is unstable under high multicollinearity, the elastic-net (Enet) estimator has been used to overcome this issue. According to the literature, the estimation of regression parameters can be improved by adding prior information about regression coefficients to the model, which is available in the form of exact or stochastic linear restrictions. In this article, we proposed a stochastic restricted LASSO-type estimator (SRLASSO) by incorporating stochastic linear restrictions. Furthermore, we compared the performance of SRLASSO with LASSO and Enet in root mean square error (RMSE) criterion and mean absolute prediction error (MAPE) criterion based on a Monte Carlo simulation study. Finally, a real-world example was used to demonstrate the performance of SRLASSO.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":"1-7"},"PeriodicalIF":1.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/7352097","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/7352097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Among several variable selection methods, LASSO is the most desirable estimation procedure for handling regularization and variable selection simultaneously in the high-dimensional linear regression models when multicollinearity exists among the predictor variables. Since LASSO is unstable under high multicollinearity, the elastic-net (Enet) estimator has been used to overcome this issue. According to the literature, the estimation of regression parameters can be improved by adding prior information about regression coefficients to the model, which is available in the form of exact or stochastic linear restrictions. In this article, we proposed a stochastic restricted LASSO-type estimator (SRLASSO) by incorporating stochastic linear restrictions. Furthermore, we compared the performance of SRLASSO with LASSO and Enet in root mean square error (RMSE) criterion and mean absolute prediction error (MAPE) criterion based on a Monte Carlo simulation study. Finally, a real-world example was used to demonstrate the performance of SRLASSO.
线性回归模型中的随机受限lasso型估计量
在几种变量选择方法中,当预测变量之间存在多重共线性时,LASSO是在高维线性回归模型中同时处理正则化和变量选择的最理想的估计程序。由于LASSO在高多重共线性下是不稳定的,因此使用弹性网(Enet)估计器来克服这个问题。根据文献,可以通过向模型中添加关于回归系数的先验信息来改进回归参数的估计,该先验信息以精确或随机线性限制的形式可用。本文通过引入随机线性约束,提出了一种随机约束LASSO型估计器(SRLASSO)。此外,基于蒙特卡罗模拟研究,我们比较了SRLASSO与LASSO和Enet在均方根误差(RMSE)准则和平均绝对预测误差(MAPE)准则方面的性能。最后,用一个真实世界的例子来演示SRLASSO的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信