Separation Phenomenon in a Forced Convection Non-Similar Externally Retarded Nanofluid Flow

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY
A. Mehmood, M. Usman, S. Munawar, N. Saleem
{"title":"Separation Phenomenon in a Forced Convection Non-Similar Externally Retarded Nanofluid Flow","authors":"A. Mehmood, M. Usman, S. Munawar, N. Saleem","doi":"10.1166/jon.2023.2017","DOIUrl":null,"url":null,"abstract":"The study of heat transfer phenomena in non-similar flow of nanofluid is the subject of this investigation. The external retarded flow past a flat plate is considered which does not allow the self-similarity solution. To enhance the heat transfer rate nanofluid has been considered instead\n of the pure fluid. The nanoparticles of Aluminum Oxide are disseminated in the Water, being base fluid, to form the nanofluid. The consideration of nanofluid results in a substantial heat transfer augmentation along with the skin friction coefficient and both are observed to be further enhanced\n with higher concentration of nanoparticles. Almost 48% and 36% of gain in heat transfer rate and skin friction coefficient, respectively, have been observed in the 20% nanoparticle concentration at the downstream location where separation is occurring. However, a 67% gain in skin friction\n coefficient is observed for other downstream locations. The effect of nanoparticle concentration on the separation phenomena has also been investigated carefully and it is found that the concentration of nanoparticle does not delay the flow separation in this case. The effect of nanoparticle\n concentration on velocity and temperature profiles and their gradients is depicted and discussed through several graphs.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of heat transfer phenomena in non-similar flow of nanofluid is the subject of this investigation. The external retarded flow past a flat plate is considered which does not allow the self-similarity solution. To enhance the heat transfer rate nanofluid has been considered instead of the pure fluid. The nanoparticles of Aluminum Oxide are disseminated in the Water, being base fluid, to form the nanofluid. The consideration of nanofluid results in a substantial heat transfer augmentation along with the skin friction coefficient and both are observed to be further enhanced with higher concentration of nanoparticles. Almost 48% and 36% of gain in heat transfer rate and skin friction coefficient, respectively, have been observed in the 20% nanoparticle concentration at the downstream location where separation is occurring. However, a 67% gain in skin friction coefficient is observed for other downstream locations. The effect of nanoparticle concentration on the separation phenomena has also been investigated carefully and it is found that the concentration of nanoparticle does not delay the flow separation in this case. The effect of nanoparticle concentration on velocity and temperature profiles and their gradients is depicted and discussed through several graphs.
强迫对流非相似外部阻滞纳米流体流中的分离现象
研究纳米流体非相似流动中的传热现象是本研究的主题。考虑了通过平板的外部延迟流动,这不允许自相似解。为了提高传热速率,已经考虑用纳米流体代替纯流体。氧化铝的纳米颗粒散布在作为基础流体的水中,形成纳米流体。纳米流体的考虑导致热传递随着皮肤摩擦系数的增加而显著增加,并且观察到两者都随着纳米颗粒浓度的增加而进一步增强。在发生分离的下游位置,在20%的纳米颗粒浓度下,观察到传热率和皮肤摩擦系数分别增加了近48%和36%。然而,对于其他下游位置,观察到皮肤摩擦系数增加了67%。还仔细研究了纳米颗粒浓度对分离现象的影响,发现在这种情况下,纳米颗粒的浓度不会延迟流动分离。纳米颗粒浓度对速度和温度分布及其梯度的影响通过几张图进行了描述和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信