Classifying Malignant and Benign Tumors of Breast Cancer

Q2 Nursing
Meshwa Rameshbhai Savalia, J. V. Verma
{"title":"Classifying Malignant and Benign Tumors of Breast Cancer","authors":"Meshwa Rameshbhai Savalia, J. V. Verma","doi":"10.4018/ijrqeh.318483","DOIUrl":null,"url":null,"abstract":"Breast cancer is the second major cause of cancer deaths in women. Machine learning classification techniques can be used to increase the precision of diagnosis and bring it closer to 100%, thus saving the lives of many people. This paper proposed four different models, built using different combinations of selected features and applying five ML classification techniques to all the models to identify the best model with the highest accuracy. It analyzes five machine learning techniques, namely logistic regression (LR), support vector machines (SVM), naive bayes (NB), decision trees (DT), and k-nearest neighbor (KNN), for prediction of breast cancer using the Wisconsin Diagnostic Breast Cancer Dataset on these four models. The objective of the paper is to find the best ML algorithm that can most accurately predict breast cancer for a particular model. The outcome of this paper helps the doctors to improvise the diagnosis by knowing the effect of combinations of symptoms with the growth of breast cancer.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.318483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 3

Abstract

Breast cancer is the second major cause of cancer deaths in women. Machine learning classification techniques can be used to increase the precision of diagnosis and bring it closer to 100%, thus saving the lives of many people. This paper proposed four different models, built using different combinations of selected features and applying five ML classification techniques to all the models to identify the best model with the highest accuracy. It analyzes five machine learning techniques, namely logistic regression (LR), support vector machines (SVM), naive bayes (NB), decision trees (DT), and k-nearest neighbor (KNN), for prediction of breast cancer using the Wisconsin Diagnostic Breast Cancer Dataset on these four models. The objective of the paper is to find the best ML algorithm that can most accurately predict breast cancer for a particular model. The outcome of this paper helps the doctors to improvise the diagnosis by knowing the effect of combinations of symptoms with the growth of breast cancer.
乳腺癌良恶性肿瘤的分类
癌症是癌症女性死亡的第二大原因。机器学习分类技术可以用来提高诊断精度,使其接近100%,从而挽救许多人的生命。本文提出了四个不同的模型,使用所选特征的不同组合建立,并将五种ML分类技术应用于所有模型,以识别具有最高精度的最佳模型。它分析了五种机器学习技术,即逻辑回归(LR)、支持向量机(SVM)、朴素贝叶斯(NB)、决策树(DT)和k最近邻(KNN),用于在这四个模型上使用威斯康星癌症乳腺诊断数据集预测癌症。本文的目的是找到能够最准确地预测特定模型的乳腺癌症的最佳ML算法。这篇论文的结果有助于医生通过了解症状组合对癌症生长的影响来提高诊断水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信