Rigidity of square-tiled interval exchange transformations

IF 0.7 1区 数学 Q2 MATHEMATICS
S. Ferenczi, P. Hubert
{"title":"Rigidity of square-tiled interval exchange transformations","authors":"S. Ferenczi, P. Hubert","doi":"10.3934/JMD.2019006","DOIUrl":null,"url":null,"abstract":"We look at interval exchange transformations defined as first return maps on the set of diagonals of a flow of direction \\begin{document}$ \\theta $\\end{document} on a square-tiled surface: using a combinatorial approach, we show that, when the surface has at least one true singularity both the flow and the interval exchange are rigid if and only if \\begin{document}$ \\tan\\theta $\\end{document} has bounded partial quotients. Moreover, if all vertices of the squares are singularities of the flat metric, and \\begin{document}$ \\tan\\theta $\\end{document} has bounded partial quotients, the square-tiled interval exchange transformation \\begin{document}$ T $\\end{document} is not of rank one. Finally, for another class of surfaces, those defined by the unfolding of billiards in Veech triangles, we build an uncountable set of rigid directional flows and an uncountable set of rigid interval exchange transformations.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2019006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We look at interval exchange transformations defined as first return maps on the set of diagonals of a flow of direction \begin{document}$ \theta $\end{document} on a square-tiled surface: using a combinatorial approach, we show that, when the surface has at least one true singularity both the flow and the interval exchange are rigid if and only if \begin{document}$ \tan\theta $\end{document} has bounded partial quotients. Moreover, if all vertices of the squares are singularities of the flat metric, and \begin{document}$ \tan\theta $\end{document} has bounded partial quotients, the square-tiled interval exchange transformation \begin{document}$ T $\end{document} is not of rank one. Finally, for another class of surfaces, those defined by the unfolding of billiards in Veech triangles, we build an uncountable set of rigid directional flows and an uncountable set of rigid interval exchange transformations.
方形平铺区间交换变换的刚度
我们研究了区间交换变换,该变换被定义为正方形平铺表面上方向流\ begin{document}$\ theta$\ end{document}的对角线集上的第一返回映射:使用组合方法,我们证明,当曲面至少有一个真奇点时,流和区间交换都是刚性的,当且仅当\ begin{document}$\tan\ theta$\ end{document}具有有界偏商。此外,如果正方形的所有顶点都是平面度量的奇点,并且\bbegin{document}$\tan\theta$\end{document}具有有界偏商,则平方平铺区间交换变换\bbegin{document}$T$\end{document}不属于秩1。最后,对于另一类曲面,即由Veech三角形中台球的展开定义的曲面,我们建立了一组不可数的刚性定向流和一组不可数的刚性区间交换变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信