Homotopic invariance of dihedral homologies for 𝐴_{∞}-algebras with involution

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Lapin
{"title":"Homotopic invariance of dihedral homologies for 𝐴_{∞}-algebras with involution","authors":"S. Lapin","doi":"10.1090/spmj/1736","DOIUrl":null,"url":null,"abstract":"<p>It is established that the dihedral homologies of involutive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebras are homotopically invariant with respect to the homotopy equivalences of involutive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebras. As a consequence, it is shown that over any field, the dihedral homologies of a topological space are isomorphic to the dihedral homologies of the involutive <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra of homologies for the simplicial group of Kan loops of the original topological space.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1736","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is established that the dihedral homologies of involutive A A_{\infty } -algebras are homotopically invariant with respect to the homotopy equivalences of involutive A A_{\infty } -algebras. As a consequence, it is shown that over any field, the dihedral homologies of a topological space are isomorphic to the dihedral homologies of the involutive A A_{\infty } -algebra of homologies for the simplicial group of Kan loops of the original topological space.

具有对合的𝐴_{∞}-代数的二面体同调不变性
建立了对合A∞A_的二面体同调{\infty } -代数对于对合A∞A_的同伦等价是同伦不变的{\infty } -代数。结果表明,在任意域上,拓扑空间的二面体同构与对合a∞A_的二面体同构是同构的{\infty } 原始拓扑空间的Kan环的简群的-同调代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信