The Role of Membrane, Feed characteristic and Process Parameter on RED Power Generation

IF 2.4 Q3 ENERGY & FUELS
Heru Susanto, M. Fitrianingtyas, I. N. Widiasa, T. Istirokhatun, Yunita Fahni, A. Abdurahman
{"title":"The Role of Membrane, Feed characteristic and Process Parameter on RED Power Generation","authors":"Heru Susanto, M. Fitrianingtyas, I. N. Widiasa, T. Istirokhatun, Yunita Fahni, A. Abdurahman","doi":"10.14710/ijred.2023.49775","DOIUrl":null,"url":null,"abstract":"Reverse electrodialysis (RED) is a renewable energy-generating SGE technique using energy from salinity gradients. This research investigates the effect of membrane and feed characteristics on reverse electrodialysis (RED) power generation. Some investigations on the process parameters effect for the complement of the main study were also conducted. The generated power of RED was measured using power density analysis. The experiments were performed using artificial seawater varied from 0 to 1 g/L NaCl for diluted salt water and from 0 to 40 g/L NaCl for concentrated salt water. In a study of ions type, NaCl non-pa is used to represent monovalent ions, and MgSO4 represents divalent ions. The results showed that the highest voltage generation is 2.004 volts by 14 cells number of the RED membrane utilizing a RED self-made laboratory scale. The power density was enhanced by raising the flow rate (0.10 L/min), concentration difference (40 g/L), and the presence of electrode rinse solution. Further, the ion type (monovalent, divalent, and multivalent) influenced the resulting RED power density, where the divalent ion (MgSO4) 's power density was greater than that of the monovalent ion (NaCl). The resistance and selectivity of the membrane were the major keys for the power generation of RED","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.49775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

Reverse electrodialysis (RED) is a renewable energy-generating SGE technique using energy from salinity gradients. This research investigates the effect of membrane and feed characteristics on reverse electrodialysis (RED) power generation. Some investigations on the process parameters effect for the complement of the main study were also conducted. The generated power of RED was measured using power density analysis. The experiments were performed using artificial seawater varied from 0 to 1 g/L NaCl for diluted salt water and from 0 to 40 g/L NaCl for concentrated salt water. In a study of ions type, NaCl non-pa is used to represent monovalent ions, and MgSO4 represents divalent ions. The results showed that the highest voltage generation is 2.004 volts by 14 cells number of the RED membrane utilizing a RED self-made laboratory scale. The power density was enhanced by raising the flow rate (0.10 L/min), concentration difference (40 g/L), and the presence of electrode rinse solution. Further, the ion type (monovalent, divalent, and multivalent) influenced the resulting RED power density, where the divalent ion (MgSO4) 's power density was greater than that of the monovalent ion (NaCl). The resistance and selectivity of the membrane were the major keys for the power generation of RED
膜、进料特性及工艺参数对RED发电的影响
反向电渗析(RED)是一种利用盐度梯度能量产生SGE的可再生能源技术。本研究调查了膜和进料特性对反电渗析(RED)发电的影响。还对工艺参数的影响进行了一些研究,以补充主要研究内容。使用功率密度分析测量RED的发电功率。实验是使用人工海水进行的,对于稀释的盐水,变化范围为0至1g/L NaCl,对于浓盐水,变化为0至40g/L NaCl。在离子类型的研究中,NaCl non-pa表示单价离子,MgSO4表示二价离子。结果表明,利用RED自制的实验室规模,RED膜的14个细胞数产生的最高电压为2.004伏。通过提高流速(0.10L/min)、浓度差(40g/L)和电极冲洗溶液的存在来提高功率密度。此外,离子类型(单价、二价和多价)影响了所得的RED功率密度,其中二价离子(MgSO4)的功率密度大于单价离子(NaCl)的功率。膜的电阻和选择性是RED发电的主要关键
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信