Positive solutions for the fractional Schrödinger equations with logarithmic and critical non‐linearities

IF 1.1 Q1 MATHEMATICS
H. Fan, Zhaosheng Feng, Xingjie Yan
{"title":"Positive solutions for the fractional Schrödinger equations with logarithmic and critical non‐linearities","authors":"H. Fan, Zhaosheng Feng, Xingjie Yan","doi":"10.1112/tlm3.12034","DOIUrl":null,"url":null,"abstract":"In this paper, we study a class of fractional Schrödinger equations involving logarithmic and critical non‐linearities on an unbounded domain, and show that such an equation with positive or sign‐changing weight potentials admits at least one positive ground state solution and the associated energy is positive (or negative). By applying the Nehari manifold method and Ljusternik–Schnirelmann category, we investigate how the weight potential affects the multiplicity of positive solutions, and obtain the relationship between the number of positive solutions and the category of some sets related to the weight potential.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study a class of fractional Schrödinger equations involving logarithmic and critical non‐linearities on an unbounded domain, and show that such an equation with positive or sign‐changing weight potentials admits at least one positive ground state solution and the associated energy is positive (or negative). By applying the Nehari manifold method and Ljusternik–Schnirelmann category, we investigate how the weight potential affects the multiplicity of positive solutions, and obtain the relationship between the number of positive solutions and the category of some sets related to the weight potential.
具有对数和临界非线性的分数阶Schrödinger方程的正解
在本文中,我们研究了一类在无界域上涉及对数和临界非线性的分数阶薛定谔方程,并证明了这种具有正或变符号权势的方程至少允许一个正基态解,并且相关能量是正(或负)的。通过应用Nehari流形方法和Ljusternik–Schnirelmann范畴,我们研究了权势如何影响正解的多重性,并得到了正解的个数与一些与权势相关的集合的类别之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信