Charge transport properties of interstitially doped graphene: a first-principles study

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dwi Nugraheni Rositawati, M. Absor, K. Triyana, I. Santoso
{"title":"Charge transport properties of interstitially doped graphene: a first-principles study","authors":"Dwi Nugraheni Rositawati, M. Absor, K. Triyana, I. Santoso","doi":"10.1088/2043-6262/acebd9","DOIUrl":null,"url":null,"abstract":"The role of interstitial atomic doping on transport properties of graphene was systematically studied using first-principles density functional theory (DFT). The study revealed that interstitial Au doping results in a p-type transfer of holes to graphene as the dopant concentration increases to 25%, with the Dirac point shifting to the Fermi level and localised states of atomic dopants appearing at the Fermi level and at energy of −1 eV. Ca, Ag and Al interstitial doping induces an n-type transfer of electrons to graphene with the Dirac point moving away from the Fermi level and localised states appearing at the Fermi level and at energy levels of ∼2 eV for Ca, around −3.5 eV for Ag, −3.5 eV and ∼1.6 eV for Al. As the dopant concentration increases further to 50%, the number of holes (or electrons) decreases for all dopants, except for Ca, as the localised state at the Fermi level disappears, and the Dirac point returns towards the Fermi level. Our research provides insights into how to reconcile the localised state and the number of charge carriers that play a significant role in the transport properties of interstitial doped graphene.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acebd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of interstitial atomic doping on transport properties of graphene was systematically studied using first-principles density functional theory (DFT). The study revealed that interstitial Au doping results in a p-type transfer of holes to graphene as the dopant concentration increases to 25%, with the Dirac point shifting to the Fermi level and localised states of atomic dopants appearing at the Fermi level and at energy of −1 eV. Ca, Ag and Al interstitial doping induces an n-type transfer of electrons to graphene with the Dirac point moving away from the Fermi level and localised states appearing at the Fermi level and at energy levels of ∼2 eV for Ca, around −3.5 eV for Ag, −3.5 eV and ∼1.6 eV for Al. As the dopant concentration increases further to 50%, the number of holes (or electrons) decreases for all dopants, except for Ca, as the localised state at the Fermi level disappears, and the Dirac point returns towards the Fermi level. Our research provides insights into how to reconcile the localised state and the number of charge carriers that play a significant role in the transport properties of interstitial doped graphene.
掺杂石墨烯的电荷输运性质:第一性原理研究
利用第一性原理密度泛函理论(DFT)系统地研究了间隙原子掺杂对石墨烯输运性质的影响。研究表明,当Au掺杂浓度增加到25%时,导致空穴向石墨烯的p型转移,狄拉克点转移到费米能级,原子掺杂的局域态出现在费米能级和- 1 eV能量处。钙、Ag)和Al间隙掺杂引起的n型电子转移石墨烯狄拉克点远离费米能级和局部的状态出现在费米能级和能级2∼eV Ca,周围−3.5 eV Ag)−3.5 eV和∼1.6 eV。作为掺杂剂浓度进一步增加50%,孔的数量(或电子)降低掺杂物,除了Ca,费米能级的局部状态消失,狄拉克点回到费米能级。我们的研究为如何调和局域态和在间隙掺杂石墨烯的输运特性中起重要作用的载流子数量提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信