{"title":"Comparing community response indices in aquatic food web models","authors":"Ágnes Móréh, F. Jordán","doi":"10.4081/aiol.2019.8621","DOIUrl":null,"url":null,"abstract":"Aquatic ecosystems face several major challenges from the introduction and invasion of species, to overfishing. In order to better manage these situations, we need predictive models, where diverse scenarios can be simulated and tested. One key challenge to address is how to quantify the relationships between single-species disturbances and their multispecies effects. Mapping the spread of direct and indirect effects in food webs helps to link species to communities. Since food webs are complex networks of interactions, it is typically not easy to make predictions, so modelling and simulation may help to reveal general patterns. In food web simulations, one can quantify the effects of local perturbations on other species, i.e., community response. This may provide information about the relative importance of individual species and it is also useful to assess the vulnerability of the whole community to local changes. However, community response can be measured in several ways and various response functions give different results. In order to better understand their similarities and differences, we present a comparative study on a reasonable set of community response functions in food web simulations. These results contribute to build more predictive, multi-species models for systems-based conservation and management. No n-c om me rci al us e o nly Aquatic food web models 95 simulation process, none of them extinct even in the course of perturbations. We modelled the dynamic behaviour of the networks in the same way as we did in Móréh et al. (2018). The dynamics can be described as follows:","PeriodicalId":37306,"journal":{"name":"Advances in Oceanography and Limnology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/aiol.2019.8621","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Oceanography and Limnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/aiol.2019.8621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Aquatic ecosystems face several major challenges from the introduction and invasion of species, to overfishing. In order to better manage these situations, we need predictive models, where diverse scenarios can be simulated and tested. One key challenge to address is how to quantify the relationships between single-species disturbances and their multispecies effects. Mapping the spread of direct and indirect effects in food webs helps to link species to communities. Since food webs are complex networks of interactions, it is typically not easy to make predictions, so modelling and simulation may help to reveal general patterns. In food web simulations, one can quantify the effects of local perturbations on other species, i.e., community response. This may provide information about the relative importance of individual species and it is also useful to assess the vulnerability of the whole community to local changes. However, community response can be measured in several ways and various response functions give different results. In order to better understand their similarities and differences, we present a comparative study on a reasonable set of community response functions in food web simulations. These results contribute to build more predictive, multi-species models for systems-based conservation and management. No n-c om me rci al us e o nly Aquatic food web models 95 simulation process, none of them extinct even in the course of perturbations. We modelled the dynamic behaviour of the networks in the same way as we did in Móréh et al. (2018). The dynamics can be described as follows:
期刊介绍:
Advances in Oceanography and Limnology was born in 2010 from the 35 years old Proceedings of the national congress of the Italian Association of Oceanology and Limnology. The AIOL Journal was funded as an interdisciplinary journal embracing both fundamental and applied Oceanographic and Limnological research, with focus on both single and multiple disciplines. Currently, two regular issues of the journal are published each year. In addition, Special Issues that focus on topics that are timely and of interest to a significant number of Limnologists and Oceanographers are also published. The journal, which is intended as an official publication of the AIOL, is also published in association with the EFFS (European Federation for Freshwater Sciences), which aims and objectives are directed towards the promotion of freshwater sciences throughout Europe. Starting from the 2015 issue, the AIOL Journal is published as an Open Access, peer-reviewed journal. Space is given to regular articles, review, short notes and opinion paper