{"title":"BROADENING THE CONVERGENCE DOMAIN OF SEVENTH-ORDER METHOD SATISFYING LIPSCHITZ AND HOLDER CONDITIONS","authors":"A. Saxena, J. P. Jai̇swal, Kamal Raj Paradasani̇","doi":"10.53006/rna.1146027","DOIUrl":null,"url":null,"abstract":"The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1146027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.