Two theorems on estimates for solutions of one class of nonlinear equations in a finite-dimensional space

IF 0.7 Q2 MATHEMATICS
B. D. Koshanov, N. Kakharman, R. U. Segizbayeva, Zh.B. Sultangaziyeva
{"title":"Two theorems on estimates for solutions of one class of nonlinear equations in a finite-dimensional space","authors":"B. D. Koshanov, N. Kakharman, R. U. Segizbayeva, Zh.B. Sultangaziyeva","doi":"10.31489/2022m3/70-84","DOIUrl":null,"url":null,"abstract":"The need to study boundary value problems for elliptic parabolic equations is dictated by numerous practical applications in the theoretical study of the processes of hydrodynamics, electrostatics, mechanics, heat conduction, elasticity theory and quantum physics. In this paper, we obtain two theorems on a priori estimates for solutions of nonlinear equations in a finite-dimensional Hilbert space. The work consists of four items. In the first subsection, the notation used and the statement of the main results are given. In the second subsection, the main lemmas are given. The third section is devoted to the proof of Theorem 1. In the fourth section, Theorem 2 is proved. The conditions of the theorems are such that they can be used in studying a certain class of initial-boundary value problems to obtain strong a priori estimates in the presence of weak a priori estimates. This is the meaning of these theorems.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022m3/70-84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The need to study boundary value problems for elliptic parabolic equations is dictated by numerous practical applications in the theoretical study of the processes of hydrodynamics, electrostatics, mechanics, heat conduction, elasticity theory and quantum physics. In this paper, we obtain two theorems on a priori estimates for solutions of nonlinear equations in a finite-dimensional Hilbert space. The work consists of four items. In the first subsection, the notation used and the statement of the main results are given. In the second subsection, the main lemmas are given. The third section is devoted to the proof of Theorem 1. In the fourth section, Theorem 2 is proved. The conditions of the theorems are such that they can be used in studying a certain class of initial-boundary value problems to obtain strong a priori estimates in the presence of weak a priori estimates. This is the meaning of these theorems.
有限维空间中一类非线性方程解的两个估计定理
在流体动力学、静电学、力学、热传导、弹性理论和量子物理学过程的理论研究中,许多实际应用决定了研究椭圆-抛物方程边值问题的必要性。本文得到了有限维Hilbert空间中非线性方程组解的两个先验估计定理。这项工作包括四个项目。在第一小节中,给出了所使用的符号和主要结果的陈述。在第二小节中,给出了主要引理。第三部分是定理1的证明。在第四节中,证明了定理2。这些定理的条件是,它们可以用于研究一类初始边值问题,以在存在弱先验估计的情况下获得强先验估计。这就是这些定理的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信