Adaptive State Feedback Control Method Based on Recursive Least Squares

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Levent, O. Aydogdu
{"title":"Adaptive State Feedback Control Method Based on Recursive Least Squares","authors":"M. Levent, O. Aydogdu","doi":"10.5755/j02.eie.31149","DOIUrl":null,"url":null,"abstract":"This study revealed an adaptive state feedback control method based on recursive least squares (RLS) that is introduced for a time-varying system to work with high efficiency. Firstly, a system identification block was created that gives the mathematical model of the time-varying system using the input/output data packets of the controller system. Thanks to this block, the system is constantly monitored to update the parameters of the system, which change over time. Linear quadratic regulator (LQR) is renewed according to these updated parameters, and self-adjustment of the system is provided according to the changed system parameters. The Matlab/Simulink state-space model of the variable loaded servo (VLS) system module was obtained for the simulation experiments in this study; then the system was controlled. Moreover, experiments were carried out on the servo control experimental equipment of the virtual simulation laboratories (VSIMLABS). The effectiveness of the proposed new method was observed taking the performance indexes as a reference to obtain the results of the practical application of the proposed method. Regarding the analysis of simulation and experimental results, the proposed approach minimizes the load effect and noise and the system works at high efficiency.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This study revealed an adaptive state feedback control method based on recursive least squares (RLS) that is introduced for a time-varying system to work with high efficiency. Firstly, a system identification block was created that gives the mathematical model of the time-varying system using the input/output data packets of the controller system. Thanks to this block, the system is constantly monitored to update the parameters of the system, which change over time. Linear quadratic regulator (LQR) is renewed according to these updated parameters, and self-adjustment of the system is provided according to the changed system parameters. The Matlab/Simulink state-space model of the variable loaded servo (VLS) system module was obtained for the simulation experiments in this study; then the system was controlled. Moreover, experiments were carried out on the servo control experimental equipment of the virtual simulation laboratories (VSIMLABS). The effectiveness of the proposed new method was observed taking the performance indexes as a reference to obtain the results of the practical application of the proposed method. Regarding the analysis of simulation and experimental results, the proposed approach minimizes the load effect and noise and the system works at high efficiency.
基于递推最小二乘的自适应状态反馈控制方法
该研究揭示了一种基于递归最小二乘(RLS)的自适应状态反馈控制方法,该方法用于时变系统的高效工作。首先,利用控制器系统的输入/输出数据包建立了系统识别块,给出了时变系统的数学模型。由于该块,系统不断受到监控,以更新随时间变化的系统参数。根据这些更新的参数更新线性二次调节器(LQR),并根据改变的系统参数提供系统的自调整。获得了变负载伺服(VLS)系统模块的Matlab/Simulink状态空间模型,用于仿真实验;然后对系统进行控制。并在虚拟仿真实验室伺服控制实验装置上进行了实验。以性能指标为参考,对新方法的有效性进行了观察,得出了新方法的实际应用结果。通过对仿真和实验结果的分析,该方法最大限度地减少了负载效应和噪声,系统工作效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信