{"title":"Adaptive State Feedback Control Method Based on Recursive Least Squares","authors":"M. Levent, O. Aydogdu","doi":"10.5755/j02.eie.31149","DOIUrl":null,"url":null,"abstract":"This study revealed an adaptive state feedback control method based on recursive least squares (RLS) that is introduced for a time-varying system to work with high efficiency. Firstly, a system identification block was created that gives the mathematical model of the time-varying system using the input/output data packets of the controller system. Thanks to this block, the system is constantly monitored to update the parameters of the system, which change over time. Linear quadratic regulator (LQR) is renewed according to these updated parameters, and self-adjustment of the system is provided according to the changed system parameters. The Matlab/Simulink state-space model of the variable loaded servo (VLS) system module was obtained for the simulation experiments in this study; then the system was controlled. Moreover, experiments were carried out on the servo control experimental equipment of the virtual simulation laboratories (VSIMLABS). The effectiveness of the proposed new method was observed taking the performance indexes as a reference to obtain the results of the practical application of the proposed method. Regarding the analysis of simulation and experimental results, the proposed approach minimizes the load effect and noise and the system works at high efficiency.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
This study revealed an adaptive state feedback control method based on recursive least squares (RLS) that is introduced for a time-varying system to work with high efficiency. Firstly, a system identification block was created that gives the mathematical model of the time-varying system using the input/output data packets of the controller system. Thanks to this block, the system is constantly monitored to update the parameters of the system, which change over time. Linear quadratic regulator (LQR) is renewed according to these updated parameters, and self-adjustment of the system is provided according to the changed system parameters. The Matlab/Simulink state-space model of the variable loaded servo (VLS) system module was obtained for the simulation experiments in this study; then the system was controlled. Moreover, experiments were carried out on the servo control experimental equipment of the virtual simulation laboratories (VSIMLABS). The effectiveness of the proposed new method was observed taking the performance indexes as a reference to obtain the results of the practical application of the proposed method. Regarding the analysis of simulation and experimental results, the proposed approach minimizes the load effect and noise and the system works at high efficiency.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.