DeepQ Residue Analysis of Computer Vision Dataset using Support Vector Machine

Q2 Computer Science
Rahama Salman
{"title":"DeepQ Residue Analysis of Computer Vision Dataset using Support Vector Machine","authors":"Rahama Salman","doi":"10.58346/jisis.2023.i1.008","DOIUrl":null,"url":null,"abstract":"A vision-based human computer interface is used to automatically recognize human mood. Image processing techniques used include a web camera for eye detection. Appearance tracking method (ABT) is measured face identification and K means Nearest Neighbor (K-NN) is used for eye detection. DWT - Discrete Wavelet Transform and DCT - Discrete Cosine Transform are suitable to extract features of eye and SVM is used to classify eye expressions. Classification of eye expressions includes anger, fear, happiness, disgust, neutral and sad. Experimental results confirm that the proposed method recognized facial expressions with higher accuracy.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2023.i1.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

A vision-based human computer interface is used to automatically recognize human mood. Image processing techniques used include a web camera for eye detection. Appearance tracking method (ABT) is measured face identification and K means Nearest Neighbor (K-NN) is used for eye detection. DWT - Discrete Wavelet Transform and DCT - Discrete Cosine Transform are suitable to extract features of eye and SVM is used to classify eye expressions. Classification of eye expressions includes anger, fear, happiness, disgust, neutral and sad. Experimental results confirm that the proposed method recognized facial expressions with higher accuracy.
基于支持向量机的计算机视觉数据集深度q残差分析
基于视觉的人机界面用于自动识别人类情绪。所使用的图像处理技术包括用于眼睛检测的网络相机。外观跟踪方法(ABT)用于人脸识别,K均值最近邻(K-NN)用于眼睛检测。离散小波变换和离散余弦变换适用于眼睛特征的提取,支持向量机用于眼睛表情的分类。眼睛表情的分类包括愤怒、恐惧、快乐、厌恶、中性和悲伤。实验结果表明,该方法对人脸表情的识别精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信