Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone

IF 1.1 Q4 BIOPHYSICS
Daniela Meleleo, C. Sblano
{"title":"Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone","authors":"Daniela Meleleo, C. Sblano","doi":"10.3934/BIOPHY.2019.1.23","DOIUrl":null,"url":null,"abstract":"The interplay between lipids and embedded proteins in plasma membrane is complex. Membrane proteins affect the stretching or disorder of lipid chains, transbilayer movement and lateral organization of lipids, thus influencing biological processes such as fusion or fission. Membrane lipids can regulate some protein functions by modulating their structure and organization. Cholesterol is a lipid of cell membranes that has been intensively investigated and found to be associated with some membrane proteins and to play an important role in diseases. Human calcitonin (hCt), an amyloid-forming peptide, is a small peptide hormone. The oligomerization and fibrillation processes of hCt can be modulated by different factors such as pH, solvent, peptide concentration, and chaperones. In this work, we investigated the role of cholesterol in hCt incorporation and channel formation in planar lipid membranes made up of palmitoyl-oleoyl-phosphatidylcholine in which no channel activity had been found. The results obtained in this study indicate that cholesterol promotes hCt incorporation and channel formation in planar lipid membranes, suggesting a possible role of sterol as a lipid target for hCt.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/BIOPHY.2019.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

The interplay between lipids and embedded proteins in plasma membrane is complex. Membrane proteins affect the stretching or disorder of lipid chains, transbilayer movement and lateral organization of lipids, thus influencing biological processes such as fusion or fission. Membrane lipids can regulate some protein functions by modulating their structure and organization. Cholesterol is a lipid of cell membranes that has been intensively investigated and found to be associated with some membrane proteins and to play an important role in diseases. Human calcitonin (hCt), an amyloid-forming peptide, is a small peptide hormone. The oligomerization and fibrillation processes of hCt can be modulated by different factors such as pH, solvent, peptide concentration, and chaperones. In this work, we investigated the role of cholesterol in hCt incorporation and channel formation in planar lipid membranes made up of palmitoyl-oleoyl-phosphatidylcholine in which no channel activity had been found. The results obtained in this study indicate that cholesterol promotes hCt incorporation and channel formation in planar lipid membranes, suggesting a possible role of sterol as a lipid target for hCt.
胆固醇对人体降钙素通道形成的影响。甾醇作为分子伴侣的可能作用
脂质和质膜中嵌入的蛋白质之间的相互作用是复杂的。膜蛋白影响脂质链的拉伸或紊乱、脂质的跨双层运动和横向组织,从而影响融合或分裂等生物过程。膜脂可以通过调节蛋白质的结构和组织来调节某些蛋白质的功能。胆固醇是一种细胞膜脂质,已被深入研究并发现与一些膜蛋白有关,并在疾病中发挥重要作用。人降钙素(hCt)是一种淀粉样蛋白形成肽,是一种小肽激素。hCt的低聚和纤化过程可以受到不同因素的调节,如pH、溶剂、肽浓度和伴侣蛋白。在这项工作中,我们研究了胆固醇在由棕榈酰油酰磷脂酰胆碱组成的平面脂质膜中hCt掺入和通道形成中的作用,其中没有发现通道活性。本研究中获得的结果表明,胆固醇促进hCt在平面脂质膜中的掺入和通道形成,这表明甾醇可能是hCt的脂质靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信