{"title":"Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone","authors":"Daniela Meleleo, C. Sblano","doi":"10.3934/BIOPHY.2019.1.23","DOIUrl":null,"url":null,"abstract":"The interplay between lipids and embedded proteins in plasma membrane is complex. Membrane proteins affect the stretching or disorder of lipid chains, transbilayer movement and lateral organization of lipids, thus influencing biological processes such as fusion or fission. Membrane lipids can regulate some protein functions by modulating their structure and organization. Cholesterol is a lipid of cell membranes that has been intensively investigated and found to be associated with some membrane proteins and to play an important role in diseases. Human calcitonin (hCt), an amyloid-forming peptide, is a small peptide hormone. The oligomerization and fibrillation processes of hCt can be modulated by different factors such as pH, solvent, peptide concentration, and chaperones. In this work, we investigated the role of cholesterol in hCt incorporation and channel formation in planar lipid membranes made up of palmitoyl-oleoyl-phosphatidylcholine in which no channel activity had been found. The results obtained in this study indicate that cholesterol promotes hCt incorporation and channel formation in planar lipid membranes, suggesting a possible role of sterol as a lipid target for hCt.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/BIOPHY.2019.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
The interplay between lipids and embedded proteins in plasma membrane is complex. Membrane proteins affect the stretching or disorder of lipid chains, transbilayer movement and lateral organization of lipids, thus influencing biological processes such as fusion or fission. Membrane lipids can regulate some protein functions by modulating their structure and organization. Cholesterol is a lipid of cell membranes that has been intensively investigated and found to be associated with some membrane proteins and to play an important role in diseases. Human calcitonin (hCt), an amyloid-forming peptide, is a small peptide hormone. The oligomerization and fibrillation processes of hCt can be modulated by different factors such as pH, solvent, peptide concentration, and chaperones. In this work, we investigated the role of cholesterol in hCt incorporation and channel formation in planar lipid membranes made up of palmitoyl-oleoyl-phosphatidylcholine in which no channel activity had been found. The results obtained in this study indicate that cholesterol promotes hCt incorporation and channel formation in planar lipid membranes, suggesting a possible role of sterol as a lipid target for hCt.
期刊介绍:
AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology