Geochemical Analysis of Hardness on the Adsorption of Surfactants in Carbonates under Severe Thermodynamic Conditions: Surface Complexation Modeling Approach
{"title":"Geochemical Analysis of Hardness on the Adsorption of Surfactants in Carbonates under Severe Thermodynamic Conditions: Surface Complexation Modeling Approach","authors":"I. Khurshid, Yacine Addad, I. Afgan","doi":"10.1115/1.4063175","DOIUrl":null,"url":null,"abstract":"\n Several core-flooding-based experimental studies demonstrated the effect of calcium and magnesium ions and it is found that these hard ions have detrimental effects on oil recovery during chemical EOR operations. However, studies regarding the coupled effect of hard ions and surfactant adsorption are very limited. Thus, this study aims to present a novel approach that can capture mineral-brine, brine-oil, and brine-surfactant interactions in the presence of hard ions (Ca+2 and Mg+2). Also, we introduced four oil/surfactant-based surface complexation geochemical reactions (SCGR) in the presence of hard ions for the first time to analyze the oil-surfactant interactions. The developed thermodynamic-based geochemical model is compared and validated with recent core flooding data. Our results illustrate that the use of oil-surfactant SCGR is important and should be captured for detailed surfactant adsorption. Thus, we observed that in the presence of hard ions, surfactant adsorption increases with the temperature rise, which is due to the increase in kinetic energy. We also observed that a reduction in hardness reduces the adsorption of surfactants. Additionally, increasing surfactant concentration led to a minor increase in the adsorption of surfactant with a significant increase in its concentration in the discharge/effluent. Therefore, the hard ions (Ca+2 and Mg+2) concentration has a substantial negative effect, as they reduce the solubility of surfactant and increases its adsorption. Furthermore, the lowest level of surfactant adsorption was accomplished by injecting ten times diluted water (< 0.070 mg/g).","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063175","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Several core-flooding-based experimental studies demonstrated the effect of calcium and magnesium ions and it is found that these hard ions have detrimental effects on oil recovery during chemical EOR operations. However, studies regarding the coupled effect of hard ions and surfactant adsorption are very limited. Thus, this study aims to present a novel approach that can capture mineral-brine, brine-oil, and brine-surfactant interactions in the presence of hard ions (Ca+2 and Mg+2). Also, we introduced four oil/surfactant-based surface complexation geochemical reactions (SCGR) in the presence of hard ions for the first time to analyze the oil-surfactant interactions. The developed thermodynamic-based geochemical model is compared and validated with recent core flooding data. Our results illustrate that the use of oil-surfactant SCGR is important and should be captured for detailed surfactant adsorption. Thus, we observed that in the presence of hard ions, surfactant adsorption increases with the temperature rise, which is due to the increase in kinetic energy. We also observed that a reduction in hardness reduces the adsorption of surfactants. Additionally, increasing surfactant concentration led to a minor increase in the adsorption of surfactant with a significant increase in its concentration in the discharge/effluent. Therefore, the hard ions (Ca+2 and Mg+2) concentration has a substantial negative effect, as they reduce the solubility of surfactant and increases its adsorption. Furthermore, the lowest level of surfactant adsorption was accomplished by injecting ten times diluted water (< 0.070 mg/g).
期刊介绍:
Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation