On the existence of unique range sets generated by non-critically injective polynomials and related issues

IF 0.7 Q2 MATHEMATICS
S. Mallick
{"title":"On the existence of unique range sets generated by non-critically injective polynomials and related issues","authors":"S. Mallick","doi":"10.32513/tbilisi/1608606051","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the existence of non-critically injective polynomials whose set of zeros form unique range sets that answers one of the most awaited and fundamental questions of uniqueness theory of entire and meromorphic functions. We also show that there exist some unique range sets and their generating polynomials which can not be characterized by any of the existing generalized results of unique range sets but as an application of our main theorems the same can be characterized. Moreover, as an application of our main results we prove that the cardinality of a unique range set does not always depend upon the number of distinct critical points of its generating polynomial.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":"13 1","pages":"81-101"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1608606051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we prove the existence of non-critically injective polynomials whose set of zeros form unique range sets that answers one of the most awaited and fundamental questions of uniqueness theory of entire and meromorphic functions. We also show that there exist some unique range sets and their generating polynomials which can not be characterized by any of the existing generalized results of unique range sets but as an application of our main theorems the same can be characterized. Moreover, as an application of our main results we prove that the cardinality of a unique range set does not always depend upon the number of distinct critical points of its generating polynomial.
关于非临界内射多项式生成的唯一范围集的存在性及相关问题
本文证明了零的集合构成唯一范围集的非临界内射多项式的存在性,从而回答了整个函数和亚纯函数唯一性理论中最令人期待的基本问题之一。我们还证明了存在一些唯一范围集及其生成多项式,它们不能用任何现有的唯一范围集的推广结果来表征,但作为我们的主要定理的一个应用,它们可以被表征。此外,作为我们的主要结果的一个应用,我们证明了唯一范围集的基数并不总是依赖于它的生成多项式的不同临界点的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信