Hannah P. Lieberman, Maia Rothman, Christian von Sperber, Cynthia M. Kallenbach
{"title":"Experimental flooding shifts carbon, nitrogen, and phosphorus pool distribution and microbial activity","authors":"Hannah P. Lieberman, Maia Rothman, Christian von Sperber, Cynthia M. Kallenbach","doi":"10.1007/s10533-023-01061-8","DOIUrl":null,"url":null,"abstract":"<div><p>Flooding transforms the soil environment, impacting small-scale controls on mineral associated carbon (C), nitrogen (N) and phosphorus (P) persistence and mobilization. Yet during flood events, mineral associated C, N, and P may not respond in the same way, such that soluble C, N, and P concentrations and stoichiometry may change potentially impacting microbial activity. Using a laboratory incubation approach, we investigated how flooding impacts C, N, and P pool distribution and microbial activity across a 1-week flood event and after drying. We found that all three mineral associated pools responded dynamically to flooding, increasing and decreasing throughout the flood with a 5.9% increase in mineral associated C and 32.5% decrease in residual P post flood. However, mineral associated C, N, and P each shifted at different temporal points, indicating that they are likely responding to separate destabilization mechanisms working at different temporal scales. Soluble C increased by 57% and soluble N decreased by 72% at the beginning of the flood which remained post-flood. However, soluble P behaved more similarly to the mineral associated pool, shifting throughout the flood period. The microbial community maintained and even increased their exo-cellular activity throughout the flood period. Our research demonstrates that the mineral associated pool can shift with short-term flooding altering the composition and quantity of the soluble pool and microbial activity.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"165 1","pages":"75 - 90"},"PeriodicalIF":3.9000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-023-01061-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Flooding transforms the soil environment, impacting small-scale controls on mineral associated carbon (C), nitrogen (N) and phosphorus (P) persistence and mobilization. Yet during flood events, mineral associated C, N, and P may not respond in the same way, such that soluble C, N, and P concentrations and stoichiometry may change potentially impacting microbial activity. Using a laboratory incubation approach, we investigated how flooding impacts C, N, and P pool distribution and microbial activity across a 1-week flood event and after drying. We found that all three mineral associated pools responded dynamically to flooding, increasing and decreasing throughout the flood with a 5.9% increase in mineral associated C and 32.5% decrease in residual P post flood. However, mineral associated C, N, and P each shifted at different temporal points, indicating that they are likely responding to separate destabilization mechanisms working at different temporal scales. Soluble C increased by 57% and soluble N decreased by 72% at the beginning of the flood which remained post-flood. However, soluble P behaved more similarly to the mineral associated pool, shifting throughout the flood period. The microbial community maintained and even increased their exo-cellular activity throughout the flood period. Our research demonstrates that the mineral associated pool can shift with short-term flooding altering the composition and quantity of the soluble pool and microbial activity.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.