{"title":"The Carleman Contraction Mapping Method for Quasilinear Elliptic Equations with Over-determined Boundary Data","authors":"Loc H. Nguyen","doi":"10.1007/s40306-023-00500-w","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a globally convergent numerical method to compute solutions to a general class of quasi-linear PDEs with both Neumann and Dirichlet boundary conditions. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the PDE under consideration. To find this fixed point, we define a recursive sequence with an arbitrary initial term using the same manner as in the proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution. On the other hand, we also show that our method delivers reliable solutions even when the given data are noisy. Numerical examples are presented.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"48 3","pages":"401 - 422"},"PeriodicalIF":0.3000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40306-023-00500-w.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-023-00500-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a globally convergent numerical method to compute solutions to a general class of quasi-linear PDEs with both Neumann and Dirichlet boundary conditions. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to the PDE under consideration. To find this fixed point, we define a recursive sequence with an arbitrary initial term using the same manner as in the proof of the contraction principle. Applying a Carleman estimate, we show that the sequence above converges to the desired solution. On the other hand, we also show that our method delivers reliable solutions even when the given data are noisy. Numerical examples are presented.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.