Validation of a Physics-based Prognostic Model with Incomplete Data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Meghoe, R. Loendersloot, T. Tinga
{"title":"Validation of a Physics-based Prognostic Model with Incomplete Data","authors":"A. Meghoe, R. Loendersloot, T. Tinga","doi":"10.36001/ijphm.2023.v14i1.3283","DOIUrl":null,"url":null,"abstract":"While the development of prognostic models is nowadays rather feasible, the implementation and validation thereof can still create many challenges. One of the main challenges is the lack of high-quality input data like operational data, environmental data, maintenance data and the limited amount of degradation or failure data. The uncertainty in the output of the prognostic model needs to be quantified before it can be utilised for either model validation or actual maintenance decision support. This study, therefore, proposes a generic framework for prognostic model validation with limited data based on uncertainty propagation. This is realised by using sensitivity indices, correlation coefficients, Monte Carlo simulations and analytical approaches. For demonstration purposes, a rail wear prognostic model is used. The demonstration concludes that by following the generic framework, the prognostic model can be validated, and as a result, realistic maintenance advice can be given to rail infrastructure managers, even when limited data is available.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i1.3283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While the development of prognostic models is nowadays rather feasible, the implementation and validation thereof can still create many challenges. One of the main challenges is the lack of high-quality input data like operational data, environmental data, maintenance data and the limited amount of degradation or failure data. The uncertainty in the output of the prognostic model needs to be quantified before it can be utilised for either model validation or actual maintenance decision support. This study, therefore, proposes a generic framework for prognostic model validation with limited data based on uncertainty propagation. This is realised by using sensitivity indices, correlation coefficients, Monte Carlo simulations and analytical approaches. For demonstration purposes, a rail wear prognostic model is used. The demonstration concludes that by following the generic framework, the prognostic model can be validated, and as a result, realistic maintenance advice can be given to rail infrastructure managers, even when limited data is available.
不完全数据下基于物理的预后模型的验证
虽然目前发展的预测模型是相当可行的,但其实施和验证仍然可以创造许多挑战。其中一个主要挑战是缺乏高质量的输入数据,如运行数据、环境数据、维护数据以及数量有限的退化或故障数据。在用于模型验证或实际维护决策支持之前,需要对预测模型输出中的不确定性进行量化。因此,本研究提出了一个基于不确定性传播的有限数据预测模型验证的通用框架。这是通过使用灵敏度指数、相关系数、蒙特卡罗模拟和分析方法来实现的。为了演示目的,使用了钢轨磨损预测模型。该演示的结论是,通过遵循通用框架,预测模型可以得到验证,因此,即使在可用数据有限的情况下,也可以向铁路基础设施管理人员提供现实的维护建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信