Conway–Maxwell–Poisson regression models for dispersed count data

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
Kimberly F. Sellers, Bailey Premeaux
{"title":"Conway–Maxwell–Poisson regression models for dispersed count data","authors":"Kimberly F. Sellers, Bailey Premeaux","doi":"10.1002/wics.1533","DOIUrl":null,"url":null,"abstract":"While Poisson regression serves as a standard tool for modeling the association between a count response variable and explanatory variables, it is well‐documented that this approach is limited by the Poisson model's assumption of data equi‐dispersion. The Conway–Maxwell–Poisson (COM‐Poisson) distribution has demonstrated itself as a viable alternative for real count data that express data over‐ or under‐dispersion, and thus the COM‐Poisson regression can flexibly model associations involving a discrete count response variable and covariates. This work overviews the ongoing developmental knowledge and advancement of COM‐Poisson regression, introducing the reader to the underlying model (and its considered reparametrizations) and related regression constructs, including zero‐inflated models, and longitudinal studies. This manuscript further introduces readers to associated computing tools available to perform COM‐Poisson and related regressions.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1533","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 21

Abstract

While Poisson regression serves as a standard tool for modeling the association between a count response variable and explanatory variables, it is well‐documented that this approach is limited by the Poisson model's assumption of data equi‐dispersion. The Conway–Maxwell–Poisson (COM‐Poisson) distribution has demonstrated itself as a viable alternative for real count data that express data over‐ or under‐dispersion, and thus the COM‐Poisson regression can flexibly model associations involving a discrete count response variable and covariates. This work overviews the ongoing developmental knowledge and advancement of COM‐Poisson regression, introducing the reader to the underlying model (and its considered reparametrizations) and related regression constructs, including zero‐inflated models, and longitudinal studies. This manuscript further introduces readers to associated computing tools available to perform COM‐Poisson and related regressions.
分散计数数据的Conway–Maxwell–Poisson回归模型
虽然泊松回归是对计数响应变量和解释变量之间的关联进行建模的标准工具,但有充分的证据表明,这种方法受到泊松模型对数据等方差假设的限制。Conway–Maxwell–Poisson(COM‐Poisson)分布已被证明是真实计数数据的一种可行的替代方案,这些数据表示数据的离散度过高或过低,因此COM‐Posson回归可以灵活地对涉及离散计数响应变量和协变量的关联进行建模。这项工作概述了COM‐Poisson回归的发展知识和进展,向读者介绍了基础模型(及其考虑的重新参数化)和相关的回归结构,包括零膨胀模型和纵向研究。本文进一步向读者介绍了可用于执行COM‐Poisson和相关回归的相关计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信