DIET: Conditional independence testing with marginal dependence measures of residual information

Mukund Sudarshan, A. Puli, Wesley Tansey, R. Ranganath
{"title":"DIET: Conditional independence testing with marginal dependence measures of residual information","authors":"Mukund Sudarshan, A. Puli, Wesley Tansey, R. Ranganath","doi":"10.48550/arXiv.2208.08579","DOIUrl":null,"url":null,"abstract":"Conditional randomization tests (CRTs) assess whether a variable x is predictive of another variable y, having observed covariates z. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: Fx∣z(x∣z) and Fy∣z(y∣z) where F⋅∣z(⋅∣z) is a conditional cumulative distribution function (CDF) for the distribution p(⋅∣z). These variables are termed \"information residuals.\" We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"206 1","pages":"10343-10367"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.08579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conditional randomization tests (CRTs) assess whether a variable x is predictive of another variable y, having observed covariates z. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: Fx∣z(x∣z) and Fy∣z(y∣z) where F⋅∣z(⋅∣z) is a conditional cumulative distribution function (CDF) for the distribution p(⋅∣z). These variables are termed "information residuals." We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.
DIET:剩余信息的边际依赖性度量的条件独立性检验
条件随机化测试(crt)评估变量x是否预测另一个变量y,观察到协变量z。crt需要拟合大量的预测模型,这通常是计算上难以处理的。现有的降低crt成本的解决方案通常将数据集分成训练和测试部分,或者依赖于启发式交互,这两种方法都会导致功率损失。我们提出了解耦独立性测试(DIET),这是一种通过利用边际独立性统计来测试条件独立性关系来避免这两个问题的算法。DIET检验两个随机变量Fx∣z(x∣z)和Fy∣z(y∣z)的边际独立性,其中F⋅∣z(⋅∣z)是分布p(⋅∣z)的条件累积分布函数(CDF)。这些变量被称为“信息残差”。给出了节食法实现有限样本1型误差控制和功率大于1型错误率的充分条件。然后,我们证明了当使用信息残差之间的互信息作为检验统计量时,DIET产生了最强大的条件有效检验。最后,我们展示了DIET在几个合成和实际基准测试中比其他可处理crt获得更高的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信