Carlos Ansótegui, Felip Manyà, Jesus Ojeda, Josep M Salvia, Eduard Torres
{"title":"Incomplete MaxSAT approaches for combinatorial testing.","authors":"Carlos Ansótegui, Felip Manyà, Jesus Ojeda, Josep M Salvia, Eduard Torres","doi":"10.1007/s10732-022-09495-3","DOIUrl":null,"url":null,"abstract":"<p><p>We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays with Constraints of minimum length, referred to as the Covering Array Number problem. This problem is central in Combinatorial Testing for the detection of system failures. In particular, we show how to apply Maximum Satisfiability (MaxSAT) technology by describing efficient encodings for different classes of complete and incomplete MaxSAT solvers to compute optimal and suboptimal solutions, respectively. Similarly, we show how to solve through MaxSAT technology a closely related problem, the Tuple Number problem, which we extend to incorporate constraints. For this problem, we additionally provide a new MaxSAT-based incomplete algorithm. The extensive experimental evaluation we carry out on the available Mixed Covering Arrays with Constraints benchmarks and the comparison with state-of-the-art tools confirm the good performance of our approaches.</p>","PeriodicalId":54810,"journal":{"name":"Journal of Heuristics","volume":"28 1","pages":"377-431"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heuristics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10732-022-09495-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays with Constraints of minimum length, referred to as the Covering Array Number problem. This problem is central in Combinatorial Testing for the detection of system failures. In particular, we show how to apply Maximum Satisfiability (MaxSAT) technology by describing efficient encodings for different classes of complete and incomplete MaxSAT solvers to compute optimal and suboptimal solutions, respectively. Similarly, we show how to solve through MaxSAT technology a closely related problem, the Tuple Number problem, which we extend to incorporate constraints. For this problem, we additionally provide a new MaxSAT-based incomplete algorithm. The extensive experimental evaluation we carry out on the available Mixed Covering Arrays with Constraints benchmarks and the comparison with state-of-the-art tools confirm the good performance of our approaches.
期刊介绍:
The Journal of Heuristics provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly. It fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems. It considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.
The journal presents practical applications, theoretical developments, decision analysis models that consider issues of rational decision making with limited information, artificial intelligence-based heuristics applied to a wide variety of problems, learning paradigms, and computational experimentation.
Officially cited as: J Heuristics
Provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly.
Fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems.
Considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.