{"title":"Scherk-like translators for mean curvature flow","authors":"D. Hoffman, F. Mart'in, B. White","doi":"10.4310/jdg/1675712995","DOIUrl":null,"url":null,"abstract":"We prove existence and uniqueness for a two-parameter family of translators for mean curvature flow. We get additional examples by taking limits at the boundary of the parameter space. Some of the translators resemble well-known minimal surfaces (Scherk's doubly periodic minimal surfaces, helicoids), but others have no minimal surface analogs.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1675712995","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22
Abstract
We prove existence and uniqueness for a two-parameter family of translators for mean curvature flow. We get additional examples by taking limits at the boundary of the parameter space. Some of the translators resemble well-known minimal surfaces (Scherk's doubly periodic minimal surfaces, helicoids), but others have no minimal surface analogs.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.